• Title/Summary/Keyword: 커팅 기계

Search Result 16, Processing Time 0.018 seconds

Current Status of Rock Cutting Technique Using Undercutting Concept (언더커팅 개념을 적용한 암반절삭기술의 현황 분석)

  • Jeong, Hoyoung;Choi, Seungbeom;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.148-156
    • /
    • 2019
  • In urban area, the use of mechanical excavators (e.g., TBM and roadheader) has been increasing in construction of tunnelling and underground space. The undercutting technology, which is modified from the conventional rock-cutting concept, has been developed by advanced countries. Therefore, research on the latest technology of mechanical excavation is required, and keeping carrying out research on conventional mechanical tunneling methods at the same time. In this study, as a fundamental study of the undercutting technique, the principle and concept of the undercutting were introduced, as well as the current status of the research of advanced countries. The undercutting is applicable as a full-face excavation method for the tunnels and underground spaces, as well as an auxiliary(partial-face excavation) method for extension of the existing tunnels.

Automation for Pick Arrangement Design of a Cutting Head Attachment Using RecurDyn/ProcessNet (RecurDyn/ProcessNet을 이용한 커팅헤드 어태치먼트의 픽 배열 설계 자동화)

  • Kang, Ji-Heon;Jang, Jin-Seok;Lee, Jae-Wook;Kang, Hoon;Kim, Kun-Woo;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.685-692
    • /
    • 2016
  • A cutting head is an attachment on the front of an excavator that cuts or grinds rocks. Cutting tools, called pick cutters, are arranged on the surface of the cutting head. The exact arrangement and configuration of pick cutters is one of the most important factors in determining grinding efficiency. This study focuses on the problem of automation for pick arrangement design, in order to make the design process more efficient and convenient. Design automation was carried out using RecurDyn/ProcessNet, and it was composed of three parts: 'Drum set', 'Pick load', and 'Pick arrangement' sections. The presented method helps to decrease costs attributed to designing cutting heads and can be used to generate a wide range of attachment mechanisms.

Assessment of rock cutting efficiency of an actuated undercutting disc (구동형 언더커팅 디스크의 절삭효율 평가)

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.199-209
    • /
    • 2021
  • Alternative methods of rock cutting have been introduced to substitute and to improve the traditional mechanical rock excavation methods (e.g., TBM and roadheader). Undercutting methods have been recently studied in some countries. In undercutting, several additional cutting parameters are involved in its cutting process compared to the traditional rock-cutting. As a fundamental study, this paper introduces the concept of undercutting method with actuated disc, lab-scaled testing system, and testing procedures of undercutting by the system. Also, we present the calculation methods of cutter forces and specific energy, and discuss the results of undercutting tests compared to those of traditional rock-cutting methods.

Design Improvement and Performance Evaluation of 20kHz Horn for Ultrasonic Cutting (20kHz 초음파 커팅용 혼의 설계 개선과 성능평가)

  • Seo, Jeong Seok;Lee, Yoon Jeong;Kim, Jin Wook;Park, Dong Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.135-140
    • /
    • 2013
  • Ultrasonic cutting is a kind of eco-technique and cost-effective technique to be used for cutting of various materials such as baked product, fresh/frozen food, rubber, textile, wood, bone, etc. The performance of ultrasonic cutting is affected by design of cutting horn and cutting conditions. Specially the design of horn to resonate at the longitudinal direction is most important. To analyze the problems from which cracking and noise are often generated with conventional cutting horn, FEA is carried out, and then improved cutting horn which can reduce maximum stress and stress concentration is designed. Vibration characteristics, resonant frequency, gain, and amplitude uniformity of the cutting horn designed optimally are evaluated through FFT analysis and compared with those of conventional cutting horn.

A Study on the Productivity Analysis of Eco-friendly Road Cutter (친환경 도로 커팅기계의 생산성 분석에 관한 연구)

  • Kim, Kyong-Hoon;Kim, Kyoon-Tai;Jun, Young-Hun;Ok, Chi-Yeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.106-107
    • /
    • 2019
  • Recently, maintenance of old facilities has emerged as a major issue. In particular, the demand for road cutting and excavation is increasing due to the aging of underground facilities such as water supply, sewage and city gas. In addition, the development of eco-friendly equipment is required due to the environmental problems of noise and dust. Therefore, this study intends to analyze the performance in terms of productivity of the eco-friendly road cutter developed as part of the development of eco-friendly equipment, and to derive improvements.

  • PDF

A Study on Contact Arc Metal Cutting for Dismantling of Reactor Pressure Vessel (원자로 해체를 위한 수중 아크 금속 절단기술에 대한 연구)

  • Kim, Chan Kyu;Moon, Do Yeong;Moon, Il Woo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.22-27
    • /
    • 2022
  • In accordance with the growing trend of decommissioning nuclear facilities, research on the cutting process is actively proceeding worldwide. In general, a thermal cutting process, such as plasma cutting is applied to decommissioning a nuclear reactor pressure vessel (RPV). Plasma cutting has the advantage of removing the radioactive materials and being able to cut thick materials. However, when operating under water, the molten metal remains in the cut plane and re-solidifies. Hence, cutting is not entirely accomplished. For these environmental reasons, it is difficult to cut thick metal. The contact arc metal cutting (CAMC) process can be used to cut thick metal under water. CAMC is a process that cuts metal using a plate-shaped electrode based on a high-current arc plasma heat source. During the cutting process, high-pressure water is sprayed from the electrode to remove the molten metal, known as rinsing. As the CAMC is conducted without using a shielding gas, such as Argon, the electrode is consumed during the process. In this study, CAMC is introduced as a method for dismantling nuclear vessels and the relationship between the metal removal and electrode consumption is investigated according to the cutting conditions.

Supersonic Nozzle Design for Laser-Assisted Oxygen Hybrid Cutting (레이저 산소 하이브리드 커팅을 위한 초음속 노즐 설계에 관한 연구)

  • Jeong, Gwang Ho;Kim, Seok;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.97-104
    • /
    • 2021
  • LASOX is a cutting technology used to dismantle nuclear power plants. The core component of the laser-assisted oxygen hybrid cutting process is the supersonic nozzle. To design optimized supersonic nozzles, an experimental design was established and computational fluid dynamics was used to analyze the supersonic nozzles. The main factors affecting the supersonic nozzle performance were identified using Minitab. Further, the correlations and interactions between the main factors of the supersonic nozzle design were analyzed. The fluid analysis results were examined for the major factors and standardized response variables as well as main effects to ensure suitability of the supersonic nozzle design for the laser-assisted oxygen cutting process.

Development of a Multi-tool Carving Machine and a Machine Control Software (멀티 툴 조각기 및 기계 제어 소프트웨어 개발)

  • Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.755-760
    • /
    • 2019
  • In this paper, we developed the multi-tool carving machine which integrates the existing hot-wire carving machine, hot-wire cutting machine and spindle so that the shape of complex structure can be produced easily and quickly. We have also developed software that solves the problem that G-Code applies only to a single tool, and controls the details of the machine's operations that can not be managed with existing 3D modeling tools.

Development of Device for the Separation between Touch Panel and LCD Module (터치패널과 LCD 모듈 접착면 분리용 장비 개발)

  • Wang, Wenping;Park, Kyoungseok;Shin, Dongwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.31-37
    • /
    • 2015
  • Recently, mobile phones have become necessary tools for everyday life. In this study, a device that can serve as a separation between a touch panel and an LCD module in a mobile phone was devised for mass repair processes at a smaill business. We used a wire cutting method to separate the bonding plate area between the modules. The device is composed of DC motors and stepping motors that can deliver a precise cutting motion. The motor control system is connected by individual control modules to a CAN network. The developed device showed excellent performance at high temperature conditions.

3D Cutting Machine of EPS Foam for Manufacturing Free-Formed Concrete Mold (비정형 콘크리트 거푸집 제작을 위한 EPS Foam의 3D 가공기계)

  • Seo, Junghwan;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.35-39
    • /
    • 2017
  • We used a construction method using a CNC milling machine, where free-formed molds were made by cutting EPS (Expanded PolyStyrene) foam with the CNC machine, to build free-formed buildings. CNC milling is off-the-shelf technology that can easily cut EPS foam; however its production cost is too high and the time to manufacture an EPS mold is too long. This paper proposes a novel cutting machine with a fast and cost effective mechanism to manufacture EPS concrete molds. Our machine comprises a cutter and Cartesian coordinate type moving mechanism, where the cutter cuts EPS foam using a hotwire in the shape of '$\sqcap$' and is capable of adjusting its cutting angle in real-time while keeping its cutting width. We proved through cutting experiments on the CNC machine that cutting time was greatly shortened compared to the conventional method and that the resulting concrete mold satisfied manufacturing precision.