• Title/Summary/Keyword: 커널패턴인식

Search Result 16, Processing Time 0.023 seconds

On Pattern Kernel with Multi-Resolution Architecture for a Lip Print Recognition (구순문 인식을 위한 복수 해상도 시스템의 패턴 커널에 관한 연구)

  • 김진옥;황대준;백경석;정진현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2067-2073
    • /
    • 2001
  • Biometric systems are forms of technology that use unique human physical characteristics to automatically identify a person. They have sensors to pick up some physical characteristics, convert them into digital patterns, and compare them with patterns stored for individual identification. However, lip-print recognition has been less developed than recognition of other human physical attributes such as the fingerprint, voice patterns, retinal at blood vessel patterns, or the face. The lip print recognition by a CCD camera has the merit of being linked with other recognition systems such as the retinal/iris eye and the face. A new method using multi-resolution architecture is proposed to recognize a lip print from the pattern kernels. A set of pattern kernels is a function of some local lip print masks. This function converts the information from a lip print into digital data. Recognition in the multi-resolution system is more reliable than recognition in the single-resolution system. The multi-resolution architecture allows us to reduce the false recognition rate from 15% to 4.7%. This paper shows that a lip print is sufficiently used by the measurements of biometric systems.

  • PDF

Kernel Pattern Recognition using K-means Clustering Method (K-평균 군집방법을 이요한 가중커널분류기)

  • 백장선;심정욱
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.447-455
    • /
    • 2000
  • We propose a weighted kernel pattern recognition method using the K -means clustering algorithm to reduce computation and storage required for the full kernel classifier. This technique finds a set of reference vectors and weights which are used to approximate the kernel classifier. Since the hierarchical clustering method implemented in the 'Weighted Parzen Window (WP\V) classifier is not able to rearrange the proper clusters, we adopt the K -means algorithm to find reference vectors and weights from the more properly rearranged clusters \Ve find that the proposed method outperforms the \VP\V method for the repre~entativeness of the reference vectors and the data reduction.

  • PDF

A Multiple Classifier System based on Dynamic Classifier Selection having Local Property (지역적 특성을 갖는 동적 선택 방법에 기반한 다중 인식기 시스템)

  • 송혜정;김백섭
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.339-346
    • /
    • 2003
  • This paper proposes a multiple classifier system having massive micro classifiers. The micro classifiers are trained by using a local set of training patterns. The k nearest neighboring training patterns of one training pattern comprise the local region for training a micro classifier. Each training pattern is incorporated with one or more micro classifiers. Two types of micro classifiers are adapted in this paper. SVM with linear kernel and SVM with RBF kernel. Classification is done by selecting the best micro classifier among the micro classifiers in vicinity of incoming test pattern. To measure the goodness of each micro classifier, the weighted sum of correctly classified training patterns in vicinity of the test pattern is used. Experiments have been done on Elena database. Results show that the proposed method gives better classification accuracy than any conventional classifiers like SVM, k-NN and the conventional classifier combination/selection scheme.

A New Self-Organizing Map based on Kernel Concepts (자가 조직화 지도의 커널 공간 해석에 관한 연구)

  • Cheong Sung-Moon;Kim Ki-Bom;Hong Soon-Jwa
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.439-448
    • /
    • 2006
  • Previous recognition/clustering algorithms such as Kohonen SOM(Self-Organizing Map), MLP(Multi-Layer Percecptron) and SVM(Support Vector Machine) might not adapt to unexpected input pattern. And it's recognition rate depends highly on the complexity of own training patterns. We could make up for and improve the weak points with lowering complexity of original problem without losing original characteristics. There are so many ways to lower complexity of the problem, and we chose a kernel concepts as an approach to do it. In this paper, using a kernel concepts, original data are mapped to hyper-dimension space which is near infinite dimension. Therefore, transferred data into the hyper-dimension are distributed spasely rather than originally distributed so as to guarantee the rate to be risen. Estimating ratio of recognition is based on a new similarity-probing and learning method that are proposed in this paper. Using CEDAR DB which data is written in cursive letters, 0 to 9, we compare a recognition/clustering performance of kSOM that is proposed in this paper with previous SOM.

Efficient Contrast Enhancement Using an Adaptive Weighted Kernel based on 2-D Histogram (2차원 히스토그램 기반 적응적 가중치 커널을 이용한 효율적 대비 강화)

  • Wee, Kyungchul;Kim, Changick
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.85-88
    • /
    • 2016
  • 대비 강화는 컴퓨터 비젼, 영상 처리, 패턴인식에서 전처리 과정으로 이용되며 그 역할이 중요하다. 2차원 히스토그램을 이용한 대비 강화 방법은 인접 픽셀 간의 정보를 이용해 대비를 강화시키기 때문에 1차원 히스토그램을 이용한 대비 강화 방법보다 우수하다. 2차원 히스토그램 기반 알고리즘에서 2차원 히스토그램의 인접픽셀 간의 화소값 차이에 따라 가중치를 주는 커널 (kernel)이 사용된다. 이러한 커널은 영상 마다 같은 가중치를 곱해주기 때문에 원하는 대비를 시켜주지 못하는 단점이 있다. 이에 본 논문은 2차원 히스토그램을 1차원 히스토그램으로 정사영을 시켜 평균값과 표준편차를 통해 2차원 히스토그램을 통계학적으로 분석한다. 그리고 선형회귀법을 이용하여 2차원 히스토그램의 통계적 정보에 따른 적응적 가중치 커널을 제안하고, 이를 이용하여 효율적 대비 강화를 한다. 실험 결과를 통해 제안하는 방법이 기존의 알고리즘에 비해 대비 향상 성능이 더 우수한 방법임을 확인하였다.

  • PDF

Fine-tuning SVM for Enhancing Speech/Music Classification (SVM의 미세조정을 통한 음성/음악 분류 성능향상)

  • Lim, Chung-Soo;Song, Ji-Hyun;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.141-148
    • /
    • 2011
  • Support vector machines have been extensively studied and utilized in pattern recognition area for years. One of interesting applications of this technique is music/speech classification for a standardized codec such as 3GPP2 selectable mode vocoder. In this paper, we propose a novel approach that improves the speech/music classification of support vector machines. While conventional support vector machine optimization techniques apply during training phase, the proposed technique can be adopted in classification phase. In this regard, the proposed approach can be developed and employed in parallel with conventional optimizations, resulting in synergistic boost in classification performance. We first analyze the impact of kernel width parameter on the classifications made by support vector machines. From this analysis, we observe that we can fine-tune outputs of support vector machines with the kernel width parameter. To make the most of this capability, we identify strong correlation among neighboring input frames, and use this correlation information as a guide to adjusting kernel width parameter. According to the experimental results, the proposed algorithm is found to have potential for improving the performance of support vector machines.

Analysis of target classification performances of active sonar returns depending on parameter values of SVM kernel functions (SVM 커널함수의 파라미터 값에 따른 능동소나 표적신호의 식별 성능 분석)

  • Park, Jeonghyun;Hwang, Chansik;Bae, Keunsung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1083-1088
    • /
    • 2013
  • Detection and classification of undersea mines in shallow waters using active sonar returns is a difficult task due to complexity of underwater environment. Support vector machine(SVM) is a binary classifier that is well known to provide a global optimum solution. In this paper, classification experiments of sonar returns from mine-like objects and non-mine-like objects are carried out using the SVM, and classification performance is analyzed and presented with discussions depending on parameter values of SVM kernel functions.

SVM Kernel Design Using Local Feature Analysis (지역특징분석을 이용한 SVM 커널 디자인)

  • Lee, Il-Yong;Ahn, Jung-Ho
    • Journal of Digital Contents Society
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • The purpose of this study is to design and implement a kernel for the support vector machine(SVM) to improve the performance of face recognition. Local feature analysis(LFA) has been well known for its good performance. SVM kernel plays a limited role of mapping low dimensional face features to high dimensional feature space but the proposed kernel using LFA is designed for face recognition purpose. Because of the novel method that local face information is extracted from training set and combined into the kernel, this method is expected to apply to various object recognition/detection tasks. The experimental results shows its improved performance.

Power Signal Recognition with High Order Moment Features for Non-Intrusive Load Monitoring (비간섭 전력 부하 감시용 고차 적률 특징을 갖는 전력 신호 인식)

  • Min, Hwang-Ki;An, Taehun;Lee, Seungwon;Lee, Seong Ro;Song, Iickho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.608-614
    • /
    • 2014
  • A pattern recognition (PR) system is addressed for non-intrusive load monitoring. To effectively recognize two appliances (for example, an electric iron and a cook top), we propose a novel feature extraction method based on high order moments of power signals. Simulation results confirm that the PR system with the proposed high order moment features and kernel discriminant analysis can effectively separate two appliances.

A Multiple SVM Classifier Combined With Neural Networks (신경망을 결합한 다중 SVM 분류기)

  • 고재필;김승태;김은주;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.163-165
    • /
    • 2001
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로서 Support Vector Machine(SVM)이 주목받고 있다. SVM은 통계학자인 Vapnik에 의해 제안된 것으로 통계적 학습이론에 기반 하여 뛰어난 일반화 성능을 보여준다. 그러나. SVM은 2클래tm 분류기이므로 일반적인 다중 클래스 패턴인식 문제에 적용할 수 없다. 본 논문에서는 이를 해결하기 위해 SVM을 신경망과 결합하여 다중 클래스 분류기로 확장하는 방법을 새롭게 제안한다. 제안하는 분류기의 성능을 비교하기 위하여 ORL얼굴 데이터를 이용하여 제안하는 분류기와 기존의 대표적인 다중 SVM, 신경망, PCA를 적응한 얼굴인식 실험을 수행하였다. 실험결과 제안하는 분류기를 이용한 얼굴인식률이 기존의 다중 SVM을 이용한 경우보다 3%, 신경망을 이용한 경우보다 6% 높은 수치를 보였다.

  • PDF