• 제목/요약/키워드: 커널밀도

검색결과 45건 처리시간 0.022초

커널 밀도 추정을 이용한 Fuzzy C-means의 초기 원형 설정 (Initial Prototype Selection in Fuzzy C-Means Using Kernel Density Estimation)

  • 조현학;허경용;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.85-88
    • /
    • 2011
  • Fuzzy C-Means (FCM) 알고리듬은 가장 널리 사용되는 군집화 알고리듬 중 하나로 다양한 응용 분야에서 사용되고 있다. 하지만 FCM은 여러 가지 문제점을 가지고 있으며 초기 원형 설정이 그 중 하나이다. FCM은 국부 최적해에 수렴하므로 초기 원형 설정에 따라 클러스터링 결과가 달라진다. 이 논문에서는 이러한 FCM의 초기 원형 설정 문제를 개선하기 위하여 커널밀도 추정 (kernel density estimation) 기법을 활용하는 방법을 제안한다. 제안한 방법에서는 먼저 커널 밀도 추정을 수행한 후 밀도가 높은 지역에 클러스터의 초기 원형을 설정하고 원형이 설정된 영역의 밀도를 감소시키는 과정을 반복함으로써 효율적으로 초기 원형을 설정할 수 있다. 제안된 방법이 일반적으로 사용되는 무작위 초기화 방법에 비해 효율적이라는 사실은 실험결과를 통해 확인할 수 있다.

  • PDF

커널 밀도 추정을 이용한 Fuzzy C-Means의 초기화 (Initialization of Fuzzy C-Means Using Kernel Density Estimation)

  • 허경용;김광백
    • 한국정보통신학회논문지
    • /
    • 제15권8호
    • /
    • pp.1659-1664
    • /
    • 2011
  • Fuzzy C-Means (FCM)는 군집화를 위해 널리 사용되는 알고리듬 중 하나로 다양한 응용 분야에서 성공적으로 사용되어 왔다. 하지만 FCM은 여러 가지 단점을 가지고 있으며 초기 원형 설정이 그 중 하나이다. FCM은 국부 최적해에 수렴하므로 초기 원형 설정에 따라 군집화의 결과가 달라진다. 따라서 초기 원형의 설정은 군집화 결과 향상을 위해 중요하다. 이 논문에서는 이러한 FCM의 초기 원형 설정 문제를 해결하는 방안으로 커널 밀도 추정을 활용하는 방법을 제안한다. 커널 밀도 추정은 비모수적 분포들에도 사용할 수 있어 국부적인 데이터 밀도 추정에 유용하다. 제안한 방법에서는 커널 밀도 추정을 수행한 후 밀도가 높은 지역에 클러스터의 초기 원형을 설정하고 원형이 설정된 영역의 밀도를 감소시키는 과정을 반복함으로써 효율적으로 초기 원형을 선택할 수 있다. 제안된 방법이 일반적으로 사용되는 무작위 초기화 방법에 비해 효율적이라는 사실은 실험 결과를 통해 확인할 수 있다.

커널 밀도 측정에서의 나이브 베이스 접근 방법 (Naive Bayes Approach in Kernel Density Estimation)

  • 샹총량;유샹루;아메드 압둘하킴 알-압시;강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.76-78
    • /
    • 2014
  • 나이브 베이스 학습은 유명하면서도, 빠르면서도 효과적인 지도 학습 방법으로, 다소 잡음을 가진 라벨이 있는 데이터집합을 다루는 데 좋은 성능을 보인다. 그러나, 나이브 베이스의 조건적 독립성 가정은 실세계 데이터를 다루는 데 필요한 특성에 다소 제약사항을 가지게 한다. 지금까지 연구자들이 이 조건적 독립성 가정을 완화시키는 방법들을 제안해 왔다. 이러한 방법들은 어트리뷰트 가중치, 커널 밀도 측정 등이 있다. 본 논문에서, 우리는 커널 밀도 측정과 어트리뷰트 가증치를 이용하여 나이브 베이스의 학습 효과를 개선하기 위한 NB Based on Attribute Weighting in Kernel Density Estimation (NBAWKDE) 이라는 새로운 접근 방법을 제안한다.

  • PDF

자가 발생 심볼열과 커널 사이즈 조절을 통한 유클리드 거리 알고리듬의 복소 채널 블라인드 등화 (Complex-Channel Blind Equalization using Euclidean Distance Algorithms with a Self-generated Symbol Set and Kernel Size Modification)

  • 김남용
    • 한국통신학회논문지
    • /
    • 제36권1A호
    • /
    • pp.35-40
    • /
    • 2011
  • 랜덤 발생 심볼과 출력 신호에 대해 두 확률 밀도 함수 사이의 유클리드 거리를 최소화하는 복소 채널 등화 알고리듬은 정보 이론적 학습방법의 장점을 살리면서 위상 회전 문제까지 극복할 수 있도록 설계 되었다. 이 논문에서는 이 알고리듬에 대해 확률 밀도 함수 구축에 사용된 커널 사이즈가 성능에 끼치는 영향을 연구하였고 커널 사이즈의 변형에 인한 정보 포텐셜 간의 힘 조절에 변화를 준 Kernel-modified 알고리듬을 제안하였다. 이 제안한 방식은 커널 사이즈 변형이 이루어지지 않은 알고리듬에 대해 약 4 dB 정도의 성능 향상을 만들어 냈다. 성상도 특성에서도 복소 채널에 의한 위상 회전이 완벽하게 극복될 뿐 아니라 보다 집중된 심볼 점을 보였다.

비모수 통계학에서 밀도 추정의 평활에 관한 역사적 고찰 (Historical Study on Density Smoothing in Nonparametric Statistics)

  • 이승우
    • 한국수학사학회지
    • /
    • 제17권2호
    • /
    • pp.15-20
    • /
    • 2004
  • 본 논문에서는 밀도 추정에 관한 통계량으로서 불편성과 일치성에 관하여 제시하고 밀도함수에 관한 평활 방법으로서 히스토그램과 커널 밀도 추정 및 극소적응평활(local adaptive smoothing)에 관하여 보이고자 한다. 그리고 과거에서 현재까지 비모수 밀도 추정에 관한 연구에 관하여 조사하고 논하고자 한다.

  • PDF

효율적인 2차 오차 함수를 이용한 입자 기반 Extended Marching Cubes (Particle-Based Extended Marching Cubes with Efficient Quadratic Error Function)

  • 권유빈;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.387-390
    • /
    • 2024
  • 본 논문에서는 효율적인 2차 오차 함수를 이용하여 입자 기반에서 EMC(Extended Marching Cubes) 알고리즘을 구현할 수 있는 새로운 알고리즘을 제안한다. Smoothing 커널(Kernels)을 통해 계산한 입자 평균 위치에서 레벨셋(Level-set)을 계산해 스칼라장을 구축한다. 그리고 난 뒤 SPH(Smoothed particle hydrodynamics)기반의 커널을 통해 밀도, 입자 평균 위치를 계산한다. 스칼라장을 이용해 등가 곡면(Isosurface)을 찾고 음함수로 표현된 표면을 구성한다. SPH 커널을 공간에서 미분하면 공간상의 어느 위치에서나 기울기를 계산할 수 있고, 이를 통해 얻어진 법선벡터를 이용하여 일반적인 EMC나 DC(Dual contouring)에서 사용하는 2차 오차 함수를 효율적으로 설계한다. 결과적으로 제안하는 방법은 메쉬와 같이 연결정보다 없는 입자 기반 데이터에서도 EMC 알고리즘을 구현하여 볼륨(Volume) 손실을 줄이고, 복잡한 음함수 표면을 표현할 수 있게 한다.

  • PDF

해상교통 밀집도 평가방법의 비교분석을 통한 개선방안 제안

  • 김윤지;이정석;조익순
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.426-428
    • /
    • 2022
  • 해상 교통량을 정량적으로 평가하고 추출하기 위한 방법으로 선박 AIS 데이터 기반의 밀집도 분석을 활용하고 있다. 밀집도는 단위시간 당 단위면적에 분포하는 선박 통항량을 계산한 것으로, 일반적으로 그리드 셀 내에 존재하는 선박 항적 포인트 개수, 항적도 라인 길이, 선박 척수 등을 계산한 밀집도 분석 방법과 커널 밀도 추정(Kernel Density Estimation) 방법 등이 있다. 하지만, AIS 데이터의 특징상 선박 속력에 따라 수신 주기가 다르기 때문에 항적이 등간격으로 나타나지 않는 문제점이 있으며, 선박의 이동과 시간의 속성으로 인해 각각의 밀집도 분석 방법은 한계점이 존재한다. 따라서 본 연구에서는 실측 AIS 데이터를 이용하여 다양한 방법의 선박 밀집도 분석을 수행하고 이를 비교하였다. 그 결과, 항적도 라인 길이에 의한 밀집도 분석이 가장 정량적인 방법으로 나타났으며 이를 통항 척수로 변환할 수 있는 선박 밀집도 분석을 개선방안으로 제안한다.

  • PDF

커널 밀도 추정과 시공간 일치성을 이용한 동영상 객체 분할 (Video Object Segmentation using Kernel Density Estimation and Spatio-temporal Coherence)

  • 안재균;김창수
    • 전기전자학회논문지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2009
  • 본 논문에서는 고정되지 않은 배경의 동영상에서 객체를 추출하는 방법을 제안한다. 제안하는 알고리즘은 추적에 기반을 둔 기법으로 크게 세 단계의 과정으로 이루어져 있다. 첫 번째 단계는 초기 분할로서, 사용자의 반응을 이용하여 첫 프레임의 분할 결과를 획득하는 과정이다. 초기 분할을 통해 획득된 결과 샘플은 커널 밀도 추정을 이용하여 각 매크로 블록별 컬러 확률 밀도 함수를 생성하는데 사용된다. 두 번째 단계에서는 각 프레임에 대해 이전 프레임의 경계 정보와 움직임 벡터를 이용하여 일치성 띠를 생성하고, 생성된 띠에 대한 시공간 확률을 추정한다. 마지막 단계에서는 각 픽셀별 컬러, 시공간, 스무드항의 합으로 구성된 에너지 함수를 최소화하여 최종 결과를 획득한다. 실험 결과를 통해서 본 논문에서 제안하는 기법이 정확한 분할 결과를 추출하는 지 다양한 테스트 영상을 통해 확인한다.

  • PDF

가우시안 커널 밀도 추정 함수를 이용한 오토인코더 기반 차량용 침입 탐지 시스템 (Autoencoder-Based Automotive Intrusion Detection System Using Gaussian Kernel Density Estimation Function)

  • 김동현;임형철;이성수
    • 전기전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.6-13
    • /
    • 2024
  • 본 논문에서는 비지도학습 모델인 오토인코더와 가우시안 커널 밀도 추정 함수를 이용하여 차량용 CAN 네트워크에서 비정상적인 데이터를 탐지하는 방안을 제안한다. 제안하는 오토인코더 모델은 정상 데이터에서 CAN 프레임의 ID만으로 학습시킨다. 이후 가우시안 커널 밀도 추정 함수를 이용하여 구한 최적의 프레임 개수와 손실 임계값을 가지는 모델을 사용하여 비정상 데이터를 효과적으로 탐지한다. DoS 공격, Gear 스푸핑 공격, RPM 스푸핑 공격, Fuzzy 공격 등 4가지 공격 데이터로 오토인코더 기반 IDS를 검증하였으며 성능을 평가하였다. 기존 비지도학습 기반 모델들과 비교했을 때 우수한 성능을 나타냈으며 모든 평가 지표에서 99% 이상의 성능을 나타냈다.

의사 샘플 신경망에서 학습 샘플 및 특징 선택 기법 (Training Sample and Feature Selection Methods for Pseudo Sample Neural Networks)

  • 허경용;박충식;이창우
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.19-26
    • /
    • 2013
  • 의사 샘플 신경망은 학습 샘플의 수가 적은 경우 학습된 신경망이 국부 최적해에 빠져 성능이 저하되는 것을 보완하기 위해 기존 샘플들로부터 의사 샘플을 생성하고 이를 통해 해공간을 평탄화 시킴으로써 학습된 신경망의 성능을 향상시킬 수 있는 신경망의 변형이다. 이는 학습 샘플의 양에 관한 문제로 이 논문에서는 이에 더해 학습 샘플의 질을 향상시킴으로써 학습된 신경망의 성능을 더욱 높일 수 있는 방법을 제시하였다. 잡음이 적게 포함된 전형적인 학습 샘플들만이 주어지고 입력 특징 중 출력과 연관성이 높은 특징만을 사용함으로써 학습된 신경망의 성능을 높일 수 있음은 자명하다. 따라서 이 논문에서는 커널밀도 추정을 통해 비전형적인 학습샘플을 제거하고 입력값이 출력값에 미치는 영향을 나타내는 연관성 척도를 사용하여 연관성이 적은 특징을 제거함으로써 의사 샘플 신경망의 성능을 향상시킬 수 있음을 보였다. 제시한 방법의 유효성은 토석류 데이터를 이용한 실험을 통해 확인할 수 있다.