• 제목/요약/키워드: 커널근사

검색결과 19건 처리시간 0.023초

크리깅 근사모델 기반의 중요도 추출법을 이용한 고장확률 계산 방안 (Failure Probability Calculation Method Using Kriging Metamodel-based Importance Sampling Method)

  • 이승규;김재훈
    • 대한기계학회논문집A
    • /
    • 제41권5호
    • /
    • pp.381-389
    • /
    • 2017
  • 마르코프체인 시뮬레이션으로 추출한 점을 기반으로 커널 밀도함수를 구성하고 중요도 추출함수로 가정하였다. 크리깅 근사모델은 한계상태식 근방에서 상세히 구성되었다. 고장확률은 크리깅 근사모델에 대해 중요도 추출법을 수행하여 계산하였다. 커널 밀도함수가 한계상태식의 근방에서 더 많은 점을 추출할 수 있도록 기존의 방법을 개선하였다. 커널 밀도함수의 파라메터를 찾기 위한 안정적인 수치계산 방안이 제시된다. 크리깅 근사모델의 불확실성으로 인해 계산된 고장확률이 변경될 가능성을 계산하여, 크리깅 근사모델의 완성도를 평가하였다.

함수근사를 위한 서포트 벡터 기계의 커널 애더트론 알고리즘 (Kernel Adatron Algorithm of Support Vector Machine for Function Approximation)

  • 석경하;황창하
    • 한국정보처리학회논문지
    • /
    • 제7권6호
    • /
    • pp.1867-1873
    • /
    • 2000
  • 함수근사는 과학과 고학부야에서 공범위하게 응용된다. 시포트 벡터 기계(support vector machine, SVM)는 원래 분류를 위해 계안되어져 문자인식, 얼굴인식 등의 응용분야에서 좋은 결과를 보여주고 있다. 최근 SVM이론 함수근사로 확장되어 많이 활용되려 하고 있다. 그러나 함수근사를 위한 SVM 알고리즘은 QP(quadratic proramming)문제와 관련되어있어 계산에 시간이 걸리며 QP를 위한 패키지가 있어야 한다. 본 논문에서는 함수근사를 위해 커널-애더트론 알고리즘을 이용한 SVM을 제안하고 QP를 이용한 SVM과 성능을 비교하고자 한다.

  • PDF

가우시안 프로세스 기반 함수근사와 서포트 벡터 학습을 이용한 레이더 및 강우계 관측 데이터의 융합 (Combining Radar and Rain Gauge Observations Utilizing Gaussian-Process-Based Regression and Support Vector Learning)

  • 유철상;박주영
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.297-305
    • /
    • 2008
  • 최근들어, 커널 기법(kernel method)은 패턴 분류, 함수 근사 및 비정상 상태 탐지 등의 분야에서 상당한 관심을 끌고 있다. 특히, 서포트 벡터 머신(support vector machine)이나 커널 주성분 분석(kernel principal component analysis) 등의 방법론에서 커널의 역할은 매우 중요한데, 이는 고전적인 선형 머신이 비선형성을 효과적으로 다룰 수 있도록 일반화 해줄 수 있기 때문이다. 본 논문에서는 커널 기반 가우시안 프로세스(gaussian process) 함수근사 기법과 서포트 벡터 학습을 이용하여 레이더와 강우계의 관측 데이터를 융합하는 문제를 고려한다. 그리고, 국내의 강원, 경북 및 충북에 걸쳐있는 지역에 대한 레이더 자료 및 강우계 자료를 대상으로 하여 본 논문에서 고려하는 방법론들에 의해 데이터 융합을 수행한 결과를 제시하고, 성능비교를 수행한다.

비대칭 라플라스 분포를 이용한 분위수 회귀 (Quantile regression using asymmetric Laplace distribution)

  • 박혜정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권6호
    • /
    • pp.1093-1101
    • /
    • 2009
  • 분위수 회귀모형은 확률변수들 사이에 확률적인 관계구조를 포함한 함수 모형을 좀 더 완벽하게 추정하도록 제공한다. 본 논문에서는 함수 추정에 로버스트하다고 알려져 있는 서포트벡터기계 기법과 이중벌칙커널기계를 이용하여 분위수 회귀모형을 추정하고자 한다. 이중벌칙커널기계는 고차원의 입력변수에 대한 분위수 회귀가 요구될 때 분위수 회귀모형을 잘 추정한다고 알려져 있다. 또한 본 논문에서는 광범위한 형태의 분위수 회귀모형 추정을 위해서 정규분포보다 비대칭 라플라스 분포를 이용한다. 본 논문에서 제안한 모형은 분위수 회귀모형 추정을 위해서 서포트벡터기계 기법에 이중벌칙커널기계를 이용하여 각각의 평균과 분산을 동시에 추정한다. 평균과 분산함수 추정을 위해 사용된 커널함수의 모수들은 최적의 값을 찾기 위해 일반화근사 교차타당성을 이용한다.

  • PDF

PSO 기반 RBFNN의 구조적 설계 (Structural Design of Radial Basis function Neural Network(RBFNN) Based on PSO)

  • 석진욱;김영훈;오성권
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.381-383
    • /
    • 2009
  • 본 논문에서는 대표적인 시스템 모델링 도구중의 하나인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)를 설계하고 모델을 최적화하기 위하여 최적화 알고리즘인 PSO(Particle Swarm Optimization) 알고리즘을 이용하였다. 즉, 모델의 최적화에 주요한 영향을 미치는 모델의 파라미터들을 PSO 알고리즘을 이용하여 동정한다. 제안된 RBF 뉴럴 네트워크는 은닉층에서의 활성함수로서 일반적으로 많이 사용되어지는 가우시안 커널함수를 사용한다. 더 나아가 모델의 최적화를 위하여 각 커널함수의 중심값은 HCM 클러스터링에 기반을 두어 중심값을 결정하고, PSO 알고리즘을 통하여 가우시안 커널함수의 분포상수, 은닉층에서의 노드 수 그리고 다수의 입력을 가질 경우 입력의 종류를 동정한다. 제안한 모델의 성능을 평가하기 위해 Mackey-Glass 시계열 공정 데이터를 적용하였으며 제안된 모델의 근사화와 일반화 능력을 분석한다.

  • PDF

K-평균 군집방법을 이요한 가중커널분류기 (Kernel Pattern Recognition using K-means Clustering Method)

  • 백장선;심정욱
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.447-455
    • /
    • 2000
  • 본 논문에서는 커널분류기에 요구되는 다량의 계산량과 자료저장공간을 감소시키도록 고안된 최적군집방법을 적용한 K-평균 가중커널분류기법이 제안되었다. 이 방법은 원래의 훈련표본보다 작은 수의 참고벡터들과 그들의 가중값을 들을 찾아 원래 커널분류 기준을 근사화하여 패턴을 인식하는 것이다. K-평균 가중커널분류기법은 가중파젠윈도우(WPW)분류기법을 개량한 것으로서 참고벡터들을 계산하기 위한 초기 부적절하게 군집된 관측값들을 최적으로 재군집화 함으로써 WPW기법의 단범을 극복하였다. 실제자료들에 제안된 방법을 적용한 결과 WPW분류기법보다 참고벡터들의 대표성과 자료축소면에서 월등히 향상된 결과를 확인하였다

  • PDF

커널기계 기법을 이용한 일반화 이분산자기회귀모형 추정 (Estimating GARCH models using kernel machine learning)

  • 황창하;신사임
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권3호
    • /
    • pp.419-425
    • /
    • 2010
  • 커널기계 기법은 최근 대용량 또는 고차원 비선형 자료를 분석하는 방법으로 인기를 많이 얻고 있다. 본 논문에서는 주식시장 수익률의 조건부 변동성을 예측하기 위한 일반화 이분산자기회귀모형을 추정하기 위해 커널기계 기법을 사용한다. 일반화 이분산자기회귀모형은 자료가 정규분포를 따른다고 가정한 후 주로 최대우도법을 사용하여 추정된다. 본 논문에서는 꼬리가 두꺼운 분포를 갖는 금융시계열자료의 변동성을 추정할 때 커널기계 기법이 최대우도법과 서포트벡터기계 보다 더 정확한 예측능력을 가진다는 것을 보이고자 한다.

커널 회귀함수 추정에서 점근최적인 평활량의 선택에 관한 연구 (Asymptotic optimal bandwidth selection in kernel regression function estimation)

  • 석경하;김대학
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권1호
    • /
    • pp.19-27
    • /
    • 1998
  • 본 논문에서는 커널 회귀함수의 추정방법에서 최적수렴율 $n^{-1/2}$을 가지는 평활량을 선택하는 방법에 대한 연구를 고려하였다. 이러한 평활량의 선택을 위하여 먼저 평활량의 수행측도인 기대평균제곱오차의 근사값을 4차항까지 테일러 급수전개를 하고 그 전개식을 최소화하는 평활량을 고려하였다. 이때 이 평활량이 포함하고 있는 미지의 범함수를 높은 차수의 커널함수를 이용하여 더욱 정확히 추정할 수 있음을 제안한다. 또한 이렇게 구한 평활량과 최적 평활량과의 상대적 수렴율이 $n^{-1/2}$가 됨을 보였다.

  • PDF

구조 및 의미 정보를 활용한 파스 트리 커널 기반의 온톨로지 정렬 방법 (Ontology Alignment based on Parse Tree Kernel usig Structural and Semantic Information)

  • 손정우;박성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권4호
    • /
    • pp.329-334
    • /
    • 2009
  • 기존 온톨로지 정렬 기법은 두가지 문제점을 가지고 있다. 먼저 자질을 해당 분야 전문가가 정의하기 때문에 중요한 자질들이 자질셋에 포함되지 않을 수 있다는 것이다. 다음으로는 온톨로지의 의미 정보와 구조 정보를 이용하여 유사도를 따로 계산한 후, 각각의 실험에 의해 정의된 가중치를 이용하여 전체 유사도를 계산한다. 하지만 온톨로지 상에 나타나는 의미 정보와 구조정보의 상대적인 가중치가 실험적인 방법 혹은 사용자에 의해 결정되기 때문에 시스템이 특정 온톨로지에 한정되거나 성능이 떨어질 수 있어 문제이다. 본 논문에서는 온톨로지 정렬을 위한 파스 트리 커널을 제안한다. 온톨로지 상의 개체에 대한 유사도를 계산하기 위해 먼저 온톨로지를 트리 구조로 변환한다 그 후, 변환된 트리 간의 유사도는 온톨로지 정렬을 위해 수정된 파스트리 커널을 이용하여 계산한다. 이때 자질은 명시적으로 나열하지 않는다. 유사도 계산시, 파스 트리 커널에 근사 스트링 매칭 기법을 적용하여 의미 정보를 반영한다. 검증 위한 실험에서 제안한 방법은 기존의 온톨로지 정렬 기법보다 나은 성능을 보였다.

정규 완화입자유동법의 고찰 (A Study of Normalized Smoothed Particle Hydrodynamics)

  • 박정수;이진성;박희덕;김용석;이재민
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.89-99
    • /
    • 2003
  • Smoothed particle hydrodynamics, SPH, is a gridless Lagrangian technique which is a useful alternative numerical analysis method to simulate high velocity deformation problems as well as astrophysical and cosmological problems. The SPH method brings about some difficulties such as tensile Instability and stress oscillation. A new SPH method, so called normalized algorithm, was introduced to overcome these difficulties. In this paper we aimed to estimate this method and have developed an one-dimensional normalized SPH program. The high velocity impact model of an aluminum bar has been analysed by using the developed program and a commercial hydrocode, LS-DYNA. The obtained numerical results showed good agreement with the results of the same model in reference. The program also showed more stable results than those of LS-DYNA in stress oscillation. We hopefully expect that the developed one-dimensional normalized SPH program can be used to solve hydrodynamic problems especially for explosive detonation analysis.