• Title/Summary/Keyword: 캐빈

Search Result 53, Processing Time 0.029 seconds

Cabin Air Filter Media Produced by Needle Punching Process (니들펀치 공정에 의한 캐빈에어필터 여재의 제조)

  • Park, Seungkyu;Kim, Heonchang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.561-564
    • /
    • 2009
  • Filter media finely interspersed with activated carbons were prepared by a needle punching process without using chemical binders. Their characteristics were investigated efficiently to abate environmentally harmful gas such as acetaldehyde, and were compared with those of cabin air filter coated with activated carbons by using chemical binders. These combination filters were installed on a vehicle fan placed in a test chamber of capacity similar to the interior volume of a commercially available passenger car, and the efficiency of acetaldehyde abatement was measured as a function of time. The filter utilizing chemical binders showed somewhat better performance for the elimination of acetaldehyde despite the adverse effect of the chemical binder that would clog the micropores of the activated carbons. It turned out that the needle punching process had the activated carbons agglomerated due to hydrophobic interactions, resulting in a relatively larger void area than that of the filter utilizing chemical binders.

Computational Thermal Flow Analysis of a Cabin Cooler for a Commercial Vehicle (상용차용 캐빈냉방기의 전산 열유동 해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2012
  • The steady three-dimensional computational thermal flow analysis using standard k-${\varepsilon}$ turbulence model was carried out to investigate the heat transfer characteristics of a cabin cooler for a commercial vehicle. The heat exchanging method of this cabin cooler is to use the cooling effect of a thermoelectric module. In view of the results so far achieved, the air system resistance of a cabin cooler is about 12.4 Pa as a static pressure, and then the operating point of a cross-flow fan considering in this study is formed in the comparatively low flowrate region. The air temperature difference obtained from the cold part of an thermoelectric module is about $26^{\circ}C$, and the cooling water temperature difference obtained from the hot part of an thermoelectric module is about $3.5^{\circ}C$.

Study on Preparation of High - Efficiency Filter Media for Cabin Filters Optimization of the Filter Component Materials - (고효율 캐빈필터여재 제조에 관한 연구(I) - 필터구성재료 최적화중심 -)

  • Son, Eun-Jong;Shin, Yu-Shik;Bae, Ggot-Ha-Yan;Jo, Yong-Seok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.56-56
    • /
    • 2012
  • 본 연구는 가정용 및 산업용 유해가스제거용 필터여재의 제조에 관한 것으로 핫멜트(hot-melt) 분사 시스템에 의한 다층구조의 부직포와 활성탄 등의 흡착물질로 구성되는 샌드위치 복합시트 및 필터여 재의 제조에 사용되는 구성재료의 최적화에 관한 연구이다. 스프레이 본딩 시스템에 의한 공정은 종래의 유해가스제거용 필터 미디어의 제조하는 방법인 활성탄과 바인더 역할을 하는 핫멜트 수지를 혼합하여 부직포 원단에 도포하여 활성탄을 부착시키는 공정에 비해 도포되는 핫멜트 수지의 양이 감소에 의한 생산비절감과 충분한 활성탄 도포에 의한 기능성 향상 등에 의해 유해가스 포집율을 높일 수 있으며 공정 이후 스프레이에 의해 도포된 핫멜트수지의 자연건조 방식에 의한, 열원이 불필요하며, 에너지가 절감되며, 속도 향상에 의한 생산성 향상, 분진발생 최소화로 인한 제조현장의 환경개선이 가능할 것으로 사료된다. 1차적으로 본 연구의 필터제조의 최적화를 위해서 스프레이 본딩시스템에 효율적으로 사용가능한 다양한 수지를 검토하였으며, 기존 외산 캐빈필터여재의 미세구조 및 성능특성, 다양한 활성탄의 흡착성능검토, 사용 가능한 여재의 특성분석을 통해 다층구조의 필터 여재에 사용 가능한 구성재료의 최적화에 중심을 두었다.

  • PDF

Hydropneumatic Modeling and Dynamic Characteristic Analysis of a Heavy Truck Semi-active Cabin Air Suspension System (대형 트럭 반능동형 캐빈 공기 현가시스템의 유공압 모델링 및 동특성 해석)

  • Lee, Kwang-Heon;Jeong, Heon-Sul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2011
  • In this paper, a hydropneumatic modeling and dynamic analysis of a heavy truck semi-active cabin air suspension system is presented. Semi-active cabin air suspension system improves driver's ride comfort by controlling the damping characteristics in accordance with driving situation. So it can reduce vibration between truck frame and cabin. Semi-active cabin air suspension system is consist of air spring, leveling valve and CDC shock absorber, and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characterics of heavy truck semi-active cabin air suspension system.

Hydropneumatic Modeling and Analysis of a Heavy Truck Cabin Air Suspension System (대형 트럭 캐빈 공기 현가장치의 유공압 모델링 및 해석)

  • Shin, Hang-Woo;Choi, Gyoo-Jae;Lee, Kwang-Heon;Ko, Han-Young;Cho, Gil-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.128-134
    • /
    • 2008
  • In this paper, a hydropneumatic modeling and analysis of a heavy truck cabin air suspension system is presented. Cabin air suspension system is a system which improves ride comfort of a heavy truck and it can reduce vibration between truck frame and cabin. The components of the system, air spring, shock absorber, leveling valve and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characteric of heavy truck cabin air suspension system.

Cabin Noise Reduction Using Unit Cabin Mock-up of High Value-added Vessel (고부가가치선의 Unit Cabin Mock-up을 이용한 캐빈소음 저감 연구)

  • Song, Keun-Bok;Joo, Won-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1210-1215
    • /
    • 2010
  • Unit cabin means room, which is installed in the high value-added vessel such as drill ship, offshore platform and FPSO, after pre-assembled. In order to develop the noise control design for a unit cabin, a variety of acoustic tests such as sound absorption, transmission and radiation measurements were carried out by using the deckhouse mock-up. From the tests, it was found out that the sound transmission loss between cabin and corridor was 13 dB below than FPSO standard and the combined noise level of the unit cabin was dominated by the radiated noise from wall panel in low frequency range. Based on the test results, design guidelines for the noise control of the unit cabin were fully established, such as the improvement of sound transmission loss between the cabin and corridor, and radiated cabin noise reduction.

Ride Performance Evaluation of a Heavy Truck Semi-active Cabin Air Suspension System (대형 트럭 반능동형 캐빈 공기 현가시스템의 승차감 성능 평가 연구)

  • Lee, Ji-Sun;Choi, Gyoo-Jae;Lee, Kwang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.77-83
    • /
    • 2008
  • Semi-active cabin air suspension system improves driver's comfort by controlling the damping characteristics in accordance with driving situation. For the driver's comfort evaluation, test procedure has the two methodologies which are filed test and lab test. A field test method has a drawback. It requires a lot of time and money on repetitive test, due to the sensitivity of field test. On the other hand, the test with six axes simulation table at laboratory can obtain the repeatability of test, better than the field test method. In this paper, the procedures of ride performance test and control logic tuning with the table are presented. Drive files of the table can be represented with the almost same input condition as field test data. According to the result from the comparative test using six axes simulation table between passive and semi-active system by making ECU logic tuning, the RMS acceleration of semi-active cabin air suspension system was reduced by 29.6% compared with passive system.

Numerical Analysis on the Thermal Flow by a Thermoelectric Module within the Cabin of a Commercial Vehicle (상용차 캐빈 내의 열전모듈에 의한 열유동 수치해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.47-54
    • /
    • 2012
  • The steady three-dimensional numerical analysis on the thermal flow using standard k-${\varepsilon}$ turbulence model was carried out to investigate the air cooling effect of a cooler on the cabin for a commercial vehicle. Here, the heat exchanging method of this cabin cooler uses the cooling effect of a thermoelectric module. In consequence, the air system resistance of a cooler within the cabin is about 12.1 Pa as a static pressure, and then the operating point of a virtual cross-flow fan considering in this study is formed in the comparatively low flowrate region. The discharging air temperature of a cooler is about $14{\sim}15^{\circ}C$. Moreover, the air cooling temperature difference obtained under the outdoor cabin temperature of $40^{\circ}C$ shows about $7{\sim}9^{\circ}C$ in a driver resting space and about $9{\sim}14^{\circ}C$ in the front of a driver's seat including the space of a driver's foot.