내용기반 영상검색시스템에서 객체 단위로 영상을 검색하기 위해서는 영상에서 의미있는 객체를 추출하는 과정이 필수적이며, 이를 위해 영역 분할을 효율적으로 수행하기 위한 양자화가 선행되어야 한다. 일반적인 칼라 양자화 기법은 칼라 수를 줄이되 양자화 된 영상이 원시 영상과 가능할 비슷해 보이도록 하는 것을 목적으로 하지만, 영역 분할을 위한 칼라 양자화에서는 칼라의 표현보나는 의미있는 객체를 용이하게 추출할 수 있도록 양자화 하는 것을 목적으로 한다. 본 논문에서는 기존의 Octree 양자화 방법과 K-means 알고리즘의 장점을 조합하여 영역 분할에 용이한 양자화 결과를 얻을 수 있는 방법을 제안한다. 먼저, Octree 양자화 방법을 수행하여 얻어진 양자화 된 칼라들 중에서 시각적으로 유사한 칼라를 병합함으로써, Octree 양자화 방법의 단점인 강제 분할 문제점을 해결한다. 이어서, 병합 후의 양자화 된 칼라에 대해서만 K-means 알고리즘을 수행함으로써, 보다 빠른 시간 내에 영역 분할에 적합한 양자화 된 영상을 얻는다. 실험을 통해 제안한 방법의 효용성을 확인하였다.
영상에서의 칼라분포 정보는 영상간의 유사성을 표현하는데 매우 유용하여 내용기반 영상검색분야에서 기본적으로 사용하고 있다. 이때, 영상 데이터베이스에서의 각 영상에 대하여 동일한 방식으로 (비)균일하게 양자화하여 표현한 칼라 히스토그램이 주로 사용되고 있다. 그러나, 전체영상에 대하여 동일한 개수의 고정된 양자화를 통해 칼라분포 정보를 표현하는데, 여러 가지 문제점과 성능 차이가 있어 다양한 해결 방안이 연구되고 있다. 본 논문에서는, 적응적 양자화 방법으로 각 영상의 칼라분포 정보를 표현하되, 상이한 양자화 칼라간의 유사도를 정의하여 칼라히스토그램 인터섹션 방법과 유사하게 영상간의 칼라분포 유사도를 계산하는 방법을 제안한다. 양자화 칼라간의 유사도는 거리에 반비례하면서 두 양자화 칼라의 작은 빈도값에 비례하도록 정의하였다. 영상간의 칼라분포 유사도는 칼라 히스토그램 인터섹션 방법을 생산자-소비자 모델로 해석하여 구하는 방법을 제안한다. 제안한 방법에 의해 기존의 칼라 히스토그램 인터섹션 방법보다 향상된 결과를 얻을 수 있음을 실험을 통해 확인하였다.
현재 널리 사용되는 hand-held형 단말기들은 영상을 표현할 때 제한된 수의 칼라만으로 표현할 수 있다. 따라서 자연색 칼라 팔레트를 이용하여 단말기에 나타낼 때 최적의 칼라 팔레트를 구현하는 것과 원영상의 각각의 칼라로부터 팔레트 칼라로 최적으로 정합 시키는 것이 요구된다. 본 논문에서는 효율적으로 칼라 팔레트를 설계하는 히스토그램 기반 영상 의존적 스칼라 양자화 알고리즘을 제안한다. 제안 알고리즘은 칼라 우선순위 결정 부분과 양자화 부분으로 구성되며 양자화 후 ANC(Adaptive Neighborhood-Clustering) 알고리즘을 적용하여 성능을 개선한다. 이 방법은 자연색 칼라 영상을 적은 비트로 표현했음에도 출력 영상이 인간의 눈에 적합하다.
칼라 히스토그램 인터섹션 방법은 칼라 분포간의 유사도를 측정하는데 널리 사용된다 하지만 이 방법은 칼라 공간을 고정된 칼라수로 양자화시킨 경우에만 유효하므로 칼라 공간에 대한 분할 문제와 양자화 레벨의 결정 문제를 내포하고 있다. 이에, 본 논문에서는 고정 양자화된 칼라 분포뿐만 아니라 적응적 양자화되어 상이한 칼라분포를 갖는 영상간의 정합에 적용 가능한 확장 칼라 히스토그램 인터섹션 방법을 제안한다. 제안된 방법은 생산자가 생산된 상품을 소비자에게 공급하는 동안 생산효율을 계산하여 경제적 이익을 최대화 시키기 위한 생산자-소비자 모델로 간주되어질 수 있다 실험을 통해 우리는 제안된 방법이 두 칼라 분포간의 유사도를 효과적으로 측정할 수 있음을 확인하였다
칼라 정보를 이용하여 영상을 정합하기 위해서는 적은 수의 칼라 집합으로 영상을 표현하는 영상 양자화 과정이 필요하다. 적응적 양자화를 사용하는 경우에는 균일 양자화에 비해 높은 정합 성능을 기대할 수 있지만 상이한 칼라 집합의 생성으로 인해 영상 정합 과정이 힘들게 된다. 이에 본 논문에서는 상이한 칼라 집합을 갖는 영상을 정합할 수 있는 기초적인 연구를 수행하였다. 영상 정합을 위해 우선 STR(sort-tile-recursive) 방법[1]을 응용하여 질의 영상의 각 칼라에 대한 유사 칼라를 DB 영상으로부터 빠르게 선정할 수 있는 방법을 개발하였다. 질의 칼라와 유사 칼라간의 유사도를 정의하고 이를 기반으로 영상간의 유사도를 계산함으로써 영상 정합에 이용할 수 있도록 하였다. 칼라간의 유사도는 칼라 차이가 고려되어 정의되는데 칼라 차이는 칼라 공간에서의 칼라 거리로 계산된다. 칼라 거리를 계산하기 위해 유클리디언 거리를 이용할 경우 많은 계산량이 요구되므로 기존의 시티블록 거리나 체스보드 거리에 비해 유클리디언 거리를 좀더 유사하게 근사화하면서 빠른 계산이 가능한 거리 계산 방법을 개발하였다.
본 논문에서는 칼라 정보 기반 영상 검색에서 양자화 과정을 거치면서 나타나는 문제점의 해결 방안으로 ART2 신경회로망을 이용한 양자화 방법을 제시한다. 영상을 양자화하면 비슷한 칼라를 가진 픽셀이 다른 칼라로 나누어지는 경우가 발생하여 영상 검색 성능을 떨어뜨린다. 따라서 본 논문에서는 양자화를 하기 전에 ART2 신경회로망을 이용하여 영상에 존재하는 여러 칼라들을 클러스터링하여 같은 클러스터 속한 비슷한 칼라의 픽셀들은 같은 칼라로 양자화되도록 하였다. 실험에서 영상 검색에 제안한 방법을 적용하였을 때, 검색의 성능 향상에 도움이 된다는 것을 확인할 수 있었다.
칼라가 물체 인식에 아주 효율적인 단서를 제공하지만 칼라 분포는 시청 조건과 카메라의 위치에 아주 큰 영향을 받는다. 생김새와 모양의 변화에 의한 칼라 분포 변화 문제를 해결하기 위해 본 논문에서는 밝기 값의 변화에 영향을 받지 않고, 색상(hue) 성분에 민감한 칼라 벡터각(color vector angle)을 이용하여 칼라 에지를 추출한 후, 영상의 화소들을 평탄 화소와 에지 화소로 구분하여 칼라 특징 값을 추출하였다. 에지 화소의 경우에는 에지 주위 칼라 쌍의 전체 분포를 HLS 색좌표계의 비균일 양자화를 통해 칼라 인접 히스토그램(color adjacency histogram)으로 표현하고, 평탄 화소의 경우에는 HLS 색좌표계의 비균일 양자화와 칼라 벡터각 균일 양자화를 통해 칼라 벡터각 히스토그램(color vector angle histogram)을 구성하여 공간적인 칼라분포를 표현하였다. 제안한 칼라 히스토그램을 이용하여 영상 검색에 적용하여 성능을 실험한 결과, 작은 빈의 수를 가지는 제안한 방법이 기존의 방법들보다 훨씬 효율적이고, 생김새와 모양의 변화에 아주 강건한 영상 검색이 가능하였고, 기존의 칼라 히스토그램 역투사 방법보다 훨씬 정확한 물체 위치 추정이 가능함을 확인할 수 있었다.
영상을 적은 비트로 표현할 때 먼저 양자화를 이용하여 칼라맵을 생성한다. 그리고 적은 비트의 칼라맵으로도 인간의 시각에 적합하게 표현하기 위해 디더링을 결합한다. 본 논문에서는 디더링 기법중 오차확산법이 주변화소로 양자화 에러를 확산한다는 것을 고려하여 칼라맵을 생성하는 새로운 방법을 제안한다. 제안방법은 LBG 알고리즘의 개선하여 클러스터의 양자화 벡터를 구하는 각각의 반복단계에서 현재 양자화 벡터와 새로운 중심값(centroid)을 연결하는 직선 상에서 새로운 양자화벡터를 구하는 기존의 알고리즘에 에러를 고려하여 새로운 양자화 벡터를 얻을 수 있도록 하였다. 제안방법을 적용하였을 때 기존의 LBG 알고리즘에 비해 양자화 영상과 디더영상의 화질이 개선되었다. 또한 각 칼라별 MSE 와 영상전체 MSE 에 대해서도 제안방법은 기존의 LBG 알고리즘에 대해 개선되었다.
본 논문은 지역적으로 초점이 맞는 정도를 고려하여 칼라 양자화 하는 방법을 제안한다. 일반적으로 사진을 촬영할 때, 촬영자는 촬영대상중 부각시키고자 하는 물체에 초점 맞추어 촬영한다. 따라서 대부분의 사진의 경우 사진의 초점이 맞추어진 영역은 사진의 중요한 정보를 담고 있다. 사진을 칼라 양자화 할 때 초점이 맞추어진 영역을 초점이 맞추어지지 않은 영역보다 더 많은 수의 색으로 표현하면 중요한 정보를 자세히 표현 할 수 있다. 본 논문은 사진의 초점이 맞추어진 영역을 찾아내고 이 영역을 더 많은 수의 색으로 표현하는 칼라 양자화 방법을 제안한다.
정보 산업의 발달에 의해 여러 가지 형태의 정보 전달이 가능하게 되었으며 최근에 칼라 화상의 정보 전달에 있어서 빠른 전송과 압축기법이 필요하게 되었다. 본 논문에서는 칼라 화상을 압축하는데 있어 개선된 SOM 알고리즘을 이용하여 칼라 이미지에 대한 벡터 양자화 기법을 제안한다. 제안된 방법은 기존의 LBG 알고리즘을 이용한 벡터 양자화 기법에 비해 블록화 현상을 줄일 수 있었으며 이미지 전체에 대해 블록의 수만큼 계속해서 반복하지 않고 동적으로 코드북을 생성시킴으로써 실행 시간도 줄일 수 있었다. 또한 웨이블릿을 칼라 화상에 적용시켜 화상의 특징을 더욱더 두드러지게 함으로써 개선된 SOM을 적용시 재생의 효과를 높일 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.