본 연구에서는 도시재생지역의 재난재해 위험성 및 회복성 분석과 현황 분석을 위한 기초 데이터의 관리와 활용성 증대를 목적으로 데이터를 등록하고 다운로드 할 수 있는 공유 플랫폼을 개발하고자 하였다. 도시재생 데이터 플랫폼은 재난재해, 지역현황, 문서 항목으로 구분하여 도시재생 정보를 서비스한다. 재난재해 항목은 폭우, 폭설, 폭염, 강풍, 지진 5개 자연재해 유형과 이로 인해 추가 피해가 발생할 수 있는 화재, 붕괴, 폭발 사회재난 3개 유형으로 구성되어있으며, 총8 종류의 재난재해 유형에 대한 위험성과 회복성 분석 DB를 제공한다. 지역현황 정보에서는 유휴공간 및 지역자산정보 등 도시재생 현황분석에 필요한 행정(통계)데이터, 시설물정보 등을 제공한다. 아울러 본 연구를 통해 산출되는 논문 및 보고서 등을 문서 항목에서 서비스한다. 데이터셋 등록 시, 시스템에 설정된 재난재해 유형, 시설물 등을 선택해 카테고리를 분류하고, 이력관리를 목적으로 데이터명과 생산년월 등에 대한 필수항목을 입력해야만 등록이 가능하도록 설정하였다. 또한 GIS 기반 공간자료 등록 시에는 가시화 서비스를 위하여 공간자료의 포맷과 좌표체계, 생산년월, 생산기관 등을 필수 입력하도록 하였으며, GIS tool을 활용한 자료 분석에 어려움이 없도록 하였다. 쇠퇴지역의 재난재해 대비/대응을 위한 도시재생 데이터 플랫폼은 금년 시범운영 후, 차년에는 클라우드 서비스 기능을 탑재해 계정 권한과 장소에 제약을 받지 않고 도시재생 업무를 수행하는 모든 사용자가 재난재해 정보를 비롯한 도시재생 관련 정보를 수집·활용할 수 있는 데이터 공유의 장을 구현함으로써 도시재생지역의 효과적인 재난재해 대비/대응 체계를 마련하고자 하였다.
전 지구적으로 생물다양성의 지속적인 감소 추세에 따른 생물자원의 중요성이 증가하는 시점에서, 식물 유전자원의 종 다양성 보존과 지속가능한 이용을 위한 체계적이고 현실적인 방안 마련이 절실한 실정이다. 국내에서도 2017년에 유전자원 접근 및 이익 공유에 대한 나고야 의정서가 발효됨에 따라 식물유래 BT산업 소재의 국내 자급이 불가피해진 상황이며, 더불어 국토의 생태복원에 적합한 식물 소재 개발의 중요성이 대두되면서 자생식물의 종자 수급기반 대책은 국가적 차원에서 중대한 과제라 할 수 있다. 우리나라는 면적 대비 높은 식물 종 다양성을 보이며, 이는 종자의 휴면유형 또한 다양하고 복잡할 수 있다는 것을 의미한다. 따라서 식물유전자원으로써의 보존 및 국가 경제적 이익을 위한 종자 활용, 산업화를 위해서는 종자의 생리적 특성에 기반 한 데이터베이스의 축적과 효과적인 활용을 위한 종자 휴면유형 분류 및 적정 휴면타파 조건을 확립할 필요가 있다. 현재까지 다양한 식물종에서 종자 휴면의 하위 카테고리가 계속적으로 세부 분류되고 있으나, 아직까지 밝혀지지 않은 세부 휴면유형에 의해 많은 유용 식물자원의 활용이 제한적이다. 종자의 휴면유형은 크게 외생휴면(Exogenous dormancy)과 내생휴면(Endogenous dormancy)으로 분류되며, 국내에서는 내생휴면에 대한 연구가 주를 이루고 있다. 한편 외생휴면은 물리적 휴면(Physical dormancy), 기계적 휴면(Mechanical dormancy) 및 화학적 휴면(Chemical dormancy)으로 세부 분류되며, 기계적 휴면과 화학적 휴면은 내생휴면인 생리적 휴면(Physiological dormancy)에 포함되어야 한다는 의견도 있다. 물리적 휴면 종자에서는 water-gap 복합체의 존재 등에서 원인을 찾을 수 있으나, 발아억제 호르몬에 기인하는 화학적 휴면 및 종(과)피 또는 배유에 의한 기계적 휴면은 배의 성장잠재력과 발달에 의해 타파될 수 있다. 이와 같이 실제로 많은 식물 종에서 다양하게 존재하는 외생휴면 유형에 대해 내생휴면과는 명확히 다른 방식으로 접근되어야 하므로, 다년간의 체계적 연구를 통해 미흡한 종자생리 연구 분야를 보완하고 자생식물의 종자 활용도를 높일 수 있을 것으로 기대한다.
본 연구는 대한민국의 남성과 여성의 다양한 헤어스타일을 헤어이미지를 활용하여 분류하고, 이를 기반으로 3D 헤어 모델을 제작하는 것을 목표로 한다. 헤어스타일 분류는 육안으로 확인 가능한 큰 특징을 기준으로 하여 14가지 카테고리로 구분하였다. 남성 6가지 스타일과 여성 8가지 스타일로 분류하였으며 헤어이미지에 가장 적합한 헤어스타일을 매칭하여 메타버스 저작환경에서 헤어 제작을 위해 필요한 헤어모델을 추천하는데 사용하도록 하였다. 메타버스와 같은 플랫폼에서 원격지에서 접속한 사용자의 헤어를 촬영하거나 이미 획득한 헤어이미지와 가장 유사한 3D 헤어 모델을 매칭하는 데 활용될 수 있다. 이를 통해 사용자에게 가장 유사한 3D 헤어 모델을 제안하는 데 사용할 수 있다.
산업 제조 분야에서 품질 관리는 불량률을 최소화하는 핵심 요소로, 미흡한 관리는 추가적인 비용 발생과 생산 지연을 야기할 수 있다. 본 연구는 제조품의 텍스쳐 결함 감지의 중요성을 중심으로, 보다 정밀한 결함 감지 방법을 제시한다. DFR(Deep Feature Reconstruction) 모델은 특징맵의 조합 및 재구성을 통한 접근법을 채택하였지만, 그 방식에는 한계가 있었다. 이에 따라, 우리는 제한점을 극복하기 위해 통계적 방법론을 활용한 새로운 손실 함수와 스킵 연결구조를 통합하고 파라미터 튜닝을 진행하였다. 이 개선된 모델을 MVTec-AD 데이터세트의 텍스쳐 카테고리에 적용한 결과, 기존 방식보다 2.3% 높은 결함 분할 AUC를 기록하였고, 전체적인 결함 감지 성능도 향상되었다. 이 결과는 제안하는 방법이 특징맵 조합의 재건축을 통한 결함 탐지에 있어서 중요한 기여함을 입증한다.
국내 온라인 패션 플랫폼은 개인사업자가 제품정보를 직접 등록하기 때문에 개인사업자의 불편함을 초래한다. 많은 제품군을 한꺼번에 수동 등록하므로 수기 입력된 제품정보로 인한 신뢰성 문제가 발생한다. 등록된 상품 이미지의 저품질 및 데이터 수의 불균형으로 인한 편향도 심각하게 제기된다. 본 연구는 오버샘플링 기법을 통해 데이터 편향을 최소화하고 13개 패션 카테고리의 다중 분류를 수행하는 ResNet50 모델을 제안한다. 컴퓨팅 자원과 오랜 학습시간을 최소화하기 위해 전이학습을 활용했다. 결과적으로, 데이터 수가 매우 부족했던 클래스의 데이터 증강을 통해 기본 CNN 모델에 비해 최대 33.4%의 향상된 식별력을 보여주었다. 모든 결과의 신뢰성은 정밀도-재현율 곡선으로 보장한다. 본 연구는 국내 온라인 패션 플랫폼 산업의 발전을 한 단계 끌어올릴 수 있을 것으로 기대한다.
본 연구는 키오스크 사용 증가로 인한 변화에 대응하기 위해 사용자 특성을 고려한 맞춤형 동적 키오스크 화면을 제공하는 것을 목표로 한다. 디지털 취약계층인 시각장애인, 노인, 어린이, 휠체어 사용자 등의 특성에 따른 화면 구성의 최적화를 위해 객체 탐지, 걸음걸이 인식, 음성발화 인식기술을 종합하여 사용자의 특성(휠체어 사용 여부, 시각 장애, 연령 등)을 실시간으로 분석하고, 이를 기반으로 9개의 카테고리로 사용자를 분류한다. 키오스크 화면은 사용자의 특성에 따라 동적으로 조정되어 효율적인 서비스 제공이 가능하다. 본 연구는 임베디드 환경에서 시스템 통신 및 운용이 이루어졌으며, 사용된 객체 탐지, 걸음걸이 인식, 음성발화 인식 기술은 각각 74%, 98.9%, 96%의 정확도를 보여준다. 제안된 기술은 프로토타입을 구현하여 그 효용성을 검증하였으며, 이를 통해 본 연구가 디지털 격차의 축소와 사용자 친화적인 "배리어 프리 키오스크" 서비스 제공의 가능성을 보였다.
소음이 존재하고, 신호의 전달 시스템이 가변적인 환경에서 신호처리는 일반적으로 적응 알고리즘에 의해 이뤄진다. 다양한 적응 알고리즘들 중에서 LMS 알고리즘은 연산량이 적고, 구현이 쉬우며, 성능이 훌륭해 가장 널리 쓰이는 알고리즘이 되었다. LMS 알고리즘의 성능에 영향을 미치는 가장 중요한 요소 중 하나가 Step Size이다. 일반적으로, Step Size가 크면, 알고리즘 수렴 속도는 빨라지지만, 수렴 오차는 커지게 되고, Step Size가 작으면 수렴 오차는 작아지지만, 수렴 속도는 느려진다. Step Size의 이러한 특성을 상호 보완하고자 많은 방법들이 제안되어 오고 있다. 본 논문에서는 오차 제곱 변화 곡선의 기울기로부터 현재 상태에 대한 카테고리를 분류하여, Step Size를 매 단계마다 적절하게 가변시킴으로써, 결과적으로 수렴 속도와 정확도, 연산량을 향상시킨 새로운 개념의 Categorized 가변 스텝 사이즈 LMS 알고리즘을 제시하고, 그 성능은 실험을 통하여 수렴 속도와 Excessive Mean Square Error (EMSE), 연산량의 관점에서 향상되었음을 검증하였다.
최근 많은 분야에서 기계학습에 대한 연구가 활발히 진행되고 있는데, 상당수의 연구들이 학습 모델의 성능을 개선하는 최신 방법론을 제시하고 있다. 본 연구에서는 방법론의 개발 못지않게 기계학습에 투입되는 훈련용 데이터의 '품질'을 개선하는 것 역시 중요하다는 점에 착안하여, 코퍼스 분석에서 자주 사용되는 '부분 문법' 처리 프로세스를 통해 훈련 데이터의 품질을 향상시키는 방법을 제시한다. 우리나라 100대 기업에 근무하는 재직자들이 채용플랫폼에 게시하는 방대한 양의 비정형 기업 리뷰 텍스트 데이터를 수집하고, 데이터 품질을 부분 문법 프로세스로 개선한 후, 부분 문법이 적용된 분류 모델이 적용되지 않은 모델보다 분류 성능이 우수함을 확인하였다. 분류 카테고리는 직원 몰입의 5가지 요인으로 상정하였는데, 국내 직장인들이 기업 리뷰가 각 유형별로 빈도에 차이가 있는지를 분석하였다. 추가로 리뷰 양상이 코로나 팬데믹 전후로 어떠한 변화가 있었는지도 분석하였다. 본 연구를 통해 국내 직장인들의 생생한 일터 경험들을 자동적으로 식별하고 분류하여, 이직을 포함한 주요한 조직문화 현상의 행태와 유발 원인 등을 유추해 볼 수 있는 근거를 제공한다.
많은 사용자들이 자신의 일상과 활동을 사회연결망서비스(SNS)에 업로드하고 있으며 자신들의 포스팅을 설명하기 위한 Hashtag를 사용하고 있다. Hashtag는 사용자가 스스로 자신의 포스팅에 대한 카테고리를 지정한다는 장점이 있으나 최근까지도 사용자가 직접 수동적으로 입력해야 한다는 번거로움이 있었다. 이에 본 연구에서는 이러한 문제를 개선하기 위하여 SNS 상에서 사용자가 업로드하는 이미지를 기반으로 하여 적절한 Hashtag를 추천하는 방법을 제안하였다. 본 연구를 위하여 촬영정보에 기반한 분석, 주소에 기반한 분석, 타사용자에 기반한 분석, 이미지 자체에 기반한 분석 방법을 설계 및 구현하였다. 또한 제안 방법이 기존의 시스템에 비해 개선되었는지 확인하기 위하여 성능 테스트를 실시하였으며 15개국 212명의 SNS 사용자를 대상으로 평가를 진행하였다. 분석 결과 기존에 서비스되는 Hashtag 추천 시스템에 비해 제안된 시스템이 높은 정확도의 추천 결과를 보였으며 기존 대비 개선되었다는 것을 확인할 수 있었다.
본 연구는 목적은 디지털 플랫폼인 YouTube에서 최근 채널을 만든 크리에이터와 유튜버의 성공 여부를 분류 분석을 통해 알아보고자 함이다. 이를 위하여 과학기술 카테고리의 유튜버 채널 실제 정보들을 바탕으로 평균 동영상 업로드 횟수, 평균 영상 길이, 선택 가능한 다국어 자막 개수, 운영 중인 다른 소셜 네트워크 채널의 정보를 식별하였다. 식별한 정보와 머신러닝 기법을 활용하여 초기 유튜버들의 성공 여부인 수익창출 여부를 분류 분석하였으며, 분석결과, 인공 신경망 알고리즘이 초기 유튜버의 성공 또는 실패를 예측하는 데 가장 정확한 결과를 제공하고 있음을 발견했다. 또한, 제시된 다섯 가지 요인은 분석결과 향상에 기여하는 것으로 나타났다. 본 연구는 유튜브를 시작하고자 하는 신규 개인 창업가, 현재 유튜브를 운영하고 있는 인플루언서, 이러한 디지털 플랫폼을 활용하고자 하는 기업들에게 디지털 플랫폼의 다양한 접근 방식과 활용 방향에 대해 제언한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.