• Title/Summary/Keyword: 카테고리효과

Search Result 103, Processing Time 0.021 seconds

Study on Application of IUCN Management Category System on Baekdudaegan Protected Area (백두대간보호지역의 IUCN 관리 카테고리 적용 연구)

  • Kim, Seongil;Kang, Mihee
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.494-503
    • /
    • 2011
  • This study was aimed at applying the IUCN category system to the Baekdudaegan Protected Area. A classification key was developed to apply the system to the overlapped designated protected areas inside of Baekdudaegan Protected Area. Korea national parks and forests managers' and experts' opinions were collected and they all agreed to the use of multiple classification in Baekdudaegan Protected Area. For example, the type of natural forests among the Forest Genetic Resources Reserves was classified to be IUCN Category Ia while other types of Forest Genetic Resources Reserve was classified to be Category IV. And the Protected Forest Landscape was classified to be Category V while the other types of protected forests were classified to be Category VI. The study suggests the need of classification of forest protected areas including Baekdudaegan Protected Area using IUCN system accompanying with protected areas management effectiveness evaluation.

What Gift and to Whom? : Choosing a Gift Based on Psychological Distance (누구에게? 어떤 선물을? : 선물 선택 시 심리적 거리를 중심으로)

  • Lee, Hyowon;Kang, Hyunmo
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.95-117
    • /
    • 2021
  • In this study, we investigate which alternatives to choose when giving a gift, according to the giver's relationship with the receiver. In particular, we study which alternatives are preferred when the prices are approximately the same: products with high-brand status but low-model ranking or products with low-brand status but high-model ranking. Leclerc, Hsee, and Nunes(2005) conceptualized the relative preference between a low-ranking model of a high-status brand and a high racking model of a low-status brand. The category effect is the preference for lower-ranking models of high-status brands. Meanwhile, the ranking effect refers to the preference for higher-ranking models of low-ranking brands. Based on construal level theory, the current study suggests that the category and ranking effects vary depending on the giver's relationship (vertical vs. horizontal) and intimacy (distant vs. close) with the person who will receive the gift. We manipulate the relationship and intimacy of the subject receiving the gift and verify the interaction effect. Results reveal that the giver exhibited a category effect in vertical relationships in which the psychological distance was far from the relationship. However, the ranking effect was found in horizontal relationships in which the psychological distance was close. Lastly, the gift selection significantly depends on the level. Overall, this study showed that when choosing a gift, the selection of a low-ranking model of a product from a high-tier brand or a high-ranking model from a low-tier brand might vary depending on the type of relationship and the level of intimacy. In addition, our findings provided managerial implications in targeting and marketing communication strategies based on product status.

Identifying the Main Price Ranges of Online Product Category (온라인 상품 카테고리 내 주요 가격대 식별)

  • Kim, Jun Woo;Im, Kwang Hyuk
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.733-741
    • /
    • 2012
  • In recent, many consumers visit the online shopping malls or price comparison sites to collect the information on the product category that they are interested in. However, the volumes of the data provided by such web sites are often too enormous, and significant number of consumers have trouble in making purchase decision based on the plethora of products and sellers. In this context, modern online shopping agents need to process the retrieved information in more intelligent way before providing them to the users. This paper proposes a novel approach for identifying the main price ranges hidden in a single product category. To this end, the price of an item in the category is represented as a row vector and k-means clustering analysis is applied to the price vectors to produce the clusters that consists of the product items with similar price vectors. Then, the main price ranges of the product category can be identified from the result of clustering analysis. In general, the price is one of the most important factors in the consumers' purchase decision, and the identified main price ranges will be helpful for the online shoppers to find appropriate items effectively.

Video Category Classifier for Personalized Advertisements using Deep Learning Detection Tool YOLO (개인 맞춤형 광고를 위한 딥러닝 검출 툴을 이용한 영상 카테고리 분류기)

  • Park, Jin-Young;Ahn, Won-Jin;Ahn, Cheon-Su;Kang, Suk-Ju
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.237-239
    • /
    • 2019
  • 최근 인터넷 영상 매체가 발전하고 대중화되며 이를 통한 광고 효과가 커지고 있다. 이들 영상에 관련된 광고를 자동으로 연결할 수 있다면 효과적일 것이다. 본 논문은 딥러닝 검출 툴을 적용한 영상 카테고리 분류 기법을 제안한다. 이 기법은 주어진 영상을 몇 가지 카테고리로 분류하고, 분류 정보를 바탕으로 관련성이 높은 광고를 연결지어, 결과적으로 영상 시청자에게 맞춤형 광고를 제시한다.

  • PDF

Design and implementation of a satisfaction and category classifier for game reviews based on deep learning (딥러닝 기반 게임 리뷰 만족도 및 카테고리 분류 시스템 설계 및 개발)

  • Yang, Yu-Jeong;Lee, Bo-Hyun;Kim, Jin-Sil;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.729-732
    • /
    • 2018
  • 모바일 게임 산업의 발달로 많은 사용자들이 게임을 이용하면서, 그들의 만족감을 사용리뷰를 통해 드러낸다. 실제로 각 리뷰의 범주가 모두 다르지만 현재 구글 플레이 앱스토어(Google Play App Store)의 게임 리뷰 범주는 3가지로 매우 제한적이다. 따라서 본 연구에서는 빠르고 정확한 고객의 요구를 필요로 하는 게임 소프트웨어의 특성을 고려하여 게임 리뷰를 입력했을 때, 게임의 운영 및 시스템에 맞도록 리뷰의 카테고리를 세분화하고 만족도를 분석하는 시스템을 개발한다. 제안 시스템은 인공신경망 모델인 CNN을 평점을 기반으로 훈련시켜 리뷰에 대한 만족도를 도출한다. 또한 Word2Vec을 이용해 단어들 간의 유사도를 구하고, 이를 활용한 단어 배열을 이용하여 가장 스코어가 높은 카테고리로 배정한다. 본 논문은 제안한 리뷰 만족도 및 카테고리 분류 시스템이 실제 효과적으로 리뷰를 보다 의미 있는 정보로써 제공할 수 있음을 보인다.

CTKOS : Categorized Tag-based Knowledge Organization System (카테고리형 태그 기반의 지식조직체계 구현)

  • Yoo, Dong-Hee;Kim, Gun-Woo;Choi, Keun-Ho;Suh, Yong-Moo
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.59-74
    • /
    • 2011
  • As more users are willingly participating in the creation of web contents, flat folksonomy using simple tags has emerged as a powerful instrument to classify and share a huge amount of knowledge on the web. However, flat folksonomy has semantic problems, such as ambiguity and misunderstanding of tags. To alleviate such problems, many studies have built structured folksonomy with a hierarchical structure or relationships among tags. However, structured folksonomy also has some fundamental problems, such as limited tagging to pre-defined vocabulary for new tags and the timeconsuming manual effort required for selecting tags. To resolve these problems, we suggested a new method of attaching a categorized tag (CT), followed by its category, to web content. CTs are automatically integrated into collaboratively-built structured folksonomy (CSF) in real time, reflecting the tag-and-category relationships by majority users. Then, we developed a CT-based knowledge organization system (CTKOS), which builds the CSF to classify organizational knowledge and allows us to locate the appropriate knowledge.

Classification using Hierarchical Sampling in Large Classification System (대규모 분류 체계에서 계층적 샘플링을 활용한 문서의 분류)

  • Hong, SungMo;Jang, HeonSeok;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.51-55
    • /
    • 2017
  • 대규모 분류체계를 사용하는 경우, 기존 방법의 딥 러닝으로는 분류 정확도가 현저히 떨어진다. 이를 해결하기 위해 계층 구조를 활용한 네거티브 샘플링 방법을 제안한다. 학습 문서가 속한 카테고리의 상위 카테고리와 일정부분 겹치는 범위에서 네거티브 샘플을 선택하면, 하나의 큰 문제를 다수개의 하위 문제로 쪼개서 해결하는 학습 효과가 있다. 소규모 분류 체계와 대규모 분류체계 각각에서 샘플링 전략을 차용하였을 때를 비교한 결과, 대규모에서 효과가 좋았으며 그 때의 정확도가 150배 이상 차이가 나는 것을 보였다.

  • PDF

Classification using Hierarchical Sampling in Large Classification System (대규모 분류 체계에서 계층적 샘플링을 활용한 문서의 분류)

  • Hong, SungMo;Jang, HeonSeok;Kang, Inho
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.51-55
    • /
    • 2017
  • 대규모 분류체계를 사용하는 경우, 기존 방법의 딥 러닝으로는 분류 정확도가 현저히 떨어진다. 이를 해결하기 위해 계층 구조를 활용한 네거티브 샘플링 방법을 제안한다. 학습 문서가 속한 카테고리의 상위 카테고리와 일정부분 겹치는 범위에서 네거티브 샘플을 선택하면, 하나의 큰 문제를 다수개의 하위 문제로 쪼개서 해결하는 학습 효과가 있다. 소규모 분류 체계와 대규모 분류체계 각각에서 샘플링 전략을 차용하였을 때를 비교한 결과, 대규모에서 효과가 좋았으며 그 때의 정확도가 150배 이상 차이가 나는 것을 보였다.

  • PDF

Development and Application of Guidelines for Cresumer Product Design (크리슈머(Cresumer) 제품 디자인을 위한 가이드라인 개발 및 적용)

  • Yoo, Cho long;Lee, Tae Il
    • Design Convergence Study
    • /
    • v.18 no.6
    • /
    • pp.27-39
    • /
    • 2019
  • The purpose of this study is to develop design guidelines for developing innovative products utilizing the characteristics of creative consumers(cresumers) who create alternative usages of consumer products, and to suggest effective way of applying the guidelines in design process. To do this, the study conducted the analysis on the characteristics and types of cresumers and in-depth interviews and observations of actual cresumers. The study was able to initially come up with 131 items in 7 categories through keywordization and affinity analysis of prior outcomes, and reorganized and modified those to 52 items in 4 categories. After verification of co-relationship and credibility analysis with 2 evaluation sessions (7-scale SD), the study has reached 4 categories - product concept development, product development, product use environment, and market possibility - with 46 guideline items. The study developed a design toolkit to effectively apply the guidelines in the product development process. The toolkit consists of three chapters and provides explanations and related examples to clarify the categories and individual guidelines, designed in the form of cards and booklet.

Research on Multi-facted News Article Classification Models Classifying Subjects, Geographies and Genres (심층 주제, 지역, 장르를 모두 분류할 수 있는 다면적 뉴스 기사 자동 분류 모델 연구)

  • Hyojin Lee;SungPil Choi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.3
    • /
    • pp.65-89
    • /
    • 2024
  • This study developed a model to classify news articles into categories of topic, genre, and region using a Korean Pre-trained Language model. To achieve this, a new news article classification system was designed by referring to the classification systems of domestic media outlets. The topic and genre classification models were implemented as hierarchical classification models that link the main categories and subcategories, and their performance was compared with that of an integrated category model. The evaluation results showed that the hierarchical structure classification model had the advantage of providing more precise categorization in ambiguous or overlapping categories compared to the integrated category model. For regional classification of news articles, a model was built to classify into 18 categories, and for regional news articles, the regional characteristics were clearly reflected in the text, resulting in high performance. This study demonstrated the effectiveness of classifying news articles from multiple perspectives-topic, genre, and region-and emphasized the significance of suggesting the potential for a multi-dimensional news article classification service that meets user needs.