• Title/Summary/Keyword: 카본침적

Search Result 5, Processing Time 0.02 seconds

Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed (유동층 반응기에서 카본블랙 촉매를 이용하는 프로판 분해에 의한 수소 생산)

  • Yoon, Yong-Hee;Lee, Seung-Chul;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.109-112
    • /
    • 2007
  • 유동층 반응기를 이용한 프로판의 촉매 분해는 $CO_2$를 방출하지 않고 수소를 생성하는 새로운 방식이다. 카본블랙을 이용한 프로판 분해는 메탄보다 상대적으로 분해가 잘되며, 같은 온도에서 전환률이 높기 때문에 수소 생성량이 더 많다. 촉매로 사용된 카본블랙은 반응 중 생성되는 탄소의 침적에도 불구하고 8시간 이상 촉매의 활성이 유지되어 전환율이 일정하게 유지되었다. 프로판 촉매 분해 실험은 상압에서 600 ${\sim}$ $800^{\circ}C$ 온도 변화 실험을 수행하였고, 가스 유속 변화는 2.0 ${\sim}$ $4.0U_mf$에서 실험 조건 변화에 따른 실험을 하였다. 온도, 유속 변화에 따른 생성 가스의 몰분율과 프로판 전환율을 분석하였다. 프로판 분해에 의해 생성된 기체는 수소뿐만 아니라 메탄, 에틸렌, 에탄, 프로필렌과 분해되지 않은 프로판이 배출되었다. 수소를 제외한 여타 가스들은 고온에서 실험을 할수록 몰비가 줄어들었다. 고온에서 프로판의 전환율과 수소 수득률이 증가하였다. 프로판 분해 실험 전후의 카본블랙 표면의 변화는 FE-TEM으로 관측하였다.

  • PDF

Preparation Technique of Foam-Floater to Level Gauge of LPG Tank with High Pressure (LPG 고압탱크 레벨 게이지(Level Gauge)용 발포부표 제조 기술)

  • Kim, Byoung-Sik;Hong, Joo-Hee;Chung, Yongjae;Heo, Kwang-Beom
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.361-368
    • /
    • 2006
  • The purpose of this study is to invent the preparation technique of the foam-floater used as a level gauge of liquefied petroleum gas (LPG) tank under high pressure, which has not only closed pores but also has under 5 wt% changingrate in case of depositing 72 h in room-temperature LPG. In pressure-resistance and deposition experiment, the prepared foam-floaters with different sulfur (325 Mesh and 400 Mesh) and foaming agent (dinitrosopentamethylenetetramin; DPT and azodicarbonamide; AC) had a marginal difference in its weight changing-rate. However, the prepared floater with sulfur 400 Mesh and the foaming agent AC had smaller pores and higher closed pore-rate. Under $50kg_f/cm^3$ hydraulic pressure, the floater with medium thermal (MT) carbon showed a lower weight changing-rate than semi reinforcing furnace (SRF) carbon. Providing a post-treatment to the prepared floater, the hardness and the pressure-resistance of the inner pore-wall of floater were increased. Prepared floaters having a specific gravity below 0.30 were distorted and broken, and other floaters with a specific gravity above 0.35 were not useful as a floater because of the low buoyancy. Therefore, it was considered that the floaters with a specific gravity between 0.3~0.35 are the most useful as a floater under $50kg_f/cm^3$ pressure-resistance.

Methane Partial Oxidation Using Cu-ferrite (Cu-ferrite에 의한 메탄의 부분산화)

  • Woo, Sung-Woung;Kang, Kyoung-Soo;Kim, Chang-Hee;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.124-131
    • /
    • 2007
  • Methane is partially oxidized to produce the syngas by the lattice oxygen of metal oxides in the absence of gaseous oxygen. The present work deals with ferrite including copper component, which does not chemisorb methane, to investigate the suppression of the carbon deposition during the reduction of metal oxides by methane. Iron-based oxides of $Cu_xFe_{3-x}O_4$(X=0.25, 0.5, 1.0) was synthesized by the co-precipitation method. Thermogravimetric Analysis(TGA) was used to observe the isothermal reduction behavior of $Cu_xFe_{3-x}O_4$ and $Fe_3O_4$ at $600-900^{\circ}C$ under methane atmosphere. The crystal structures of reduced specimens were characterized by X-rays powder diffraction(XRD) technique. From the analyses of TGA, it is concluded that the reduction kinetics of $CuFe_2O_4$ was the fastest among $Fe_3O_4$ and $Cu_xFe_{3-x}O_4$(X=0.25, 0.5, 1.0). The X-ray diffraction analyses indicated that $Cu_xFe_{3-x}O_4$ was decomposed to Cu and $Fe_3O_4$ phase at $600^{\circ}C$ and was reduced to Cu and Fe phase at $800^{\circ}C$. $Fe_3O_4$, which was reduced at $900^{\circ}C$, showed Fe, graphite and $Fe_3C$ phases. On the contrary, $Cu_xFe_{3-x}O_4$ does not show the graphite or $Fe_3C$ phases. This results infer that Cu component suppress the carbon deposition on Cu-ferrite.

A Study on Physicochemical Properties of Epoxy Coatings for Liner Plate in Nuclear Power Plant (원자력발전소 격납건물 철재면 에폭시 도장시편의 물리화학적 특성 평가)

  • Lee, Jae-Rock;Seo, Min-Kang;Lee, Sang-Kook;Lee, Chul-Woo;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.809-814
    • /
    • 2005
  • In this work, the thermal properties of epoxy coating system on the liner plate in the containment structure of nuclear power plants had been examined by irradiation and design basis accident (DBA) conditions. The effect of immersion in hot water on adhesion strength of the coating system had been also studied. The glass transition temperature ($T_g$) and thermal stability of ET-5290/carbon steel A 32 epoxy coating systems were measured by DSC and TGA analyses, respectively. Contact angle measurements were used to determine the effect of immersion on the surface energetics of epoxy coating system, with a viewpoint of surface free energy. Adhesion tests were also executed to evaluate the adhesion strength at interfaces between carbon steel plate and epoxy resins. As a result, it was found that the irradiation led to an improvement of internal crosslinked structure in cured epoxy systems, resulting in significantly increasing the thermal stability, as well as the $T_g$. Also, the immersion in hot water made a role in the post-curing of epoxy resins and increased the mechanical interlocking of the network system, resulting in increasing the adhesion strength of the epoxy coating system.

Preparation of Nanocrystalline ZrO2 Film by Using a Zirconium Naphthenate and Evaluation of Calcium Phosphate Forming Ability (지르코늄 나프테네이트를 이용한 나노결정질 ZrO2 박막의 제조와 칼슘 포스페이트 형성 능력의 평가)

  • Oh, Jeong-Sun;Ahn, Jun-Hyung;Yun, Yeon-Hum;Kang, Bo-An;Kim, Sang-Bok;Hwang, Kyu-Seog;Shim, Yeon-A
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.884-889
    • /
    • 2002
  • In order to investigate the calcium phosphate forming ability of nanocrystalline $ZrO_2$ film, we prepared $ZrO_2/Si$ structure by using a chemical solution deposition with a zirconium naphthenate as a starting material. Precursor sol was spin-coated onto the (100)Si substrate and prefired at 500$^{\circ}C$ for 10 min in air, followed by final annealing at 800$^{\circ}C$ for 30 min in air. Crystallinity of the annealed film was examined by X-ray diffraction analysis. Surface morphology and surface roughness of the film were characterized by field emission-scanning electron microscope and atomic force microscope. After annealing, nanocrystalline $ZrO_2$ grains were obtained on the surface of the film with a homogeneous interface between the film and substrate. After immersion for 1 or 5 days in a simulated body fluid, formation of calcium phosphate was observed on $ZrO_2$ film annealed at 800$^{\circ}C$ by energy dispersive X-ray spectrometer. The fourier transform infrared spectroscopy revealed that carbonate was substituted into the calcium phosphate.