• Title/Summary/Keyword: 침하

Search Result 2,022, Processing Time 0.029 seconds

Development of Subsidence Hazard Estimation Method Based on the Depth of Gangway (갱도의 심도 정보만을 고려한 지반침하위험도 평가법 개발)

  • Jung, Yong-Bok;Song, Won-Kyong;Kang, Sang-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.272-279
    • /
    • 2008
  • This paper describes the development of a simple and quantitative subsidence hazard estimation method appropriate to Korean coal mines using gangway depth information only. In spite of simpleness of estimation method, this new method gives good results close to those obtained using influence function method when applying to a virtual rectangular excavation model and to a closed mine where actual subsidence occurred. Therefore, this method can be effectively applied to the identification of zones liable to subsidence over closed coal mine in Korea where the shape of extraction is very complex and usually unknown.

A Comparative Study on the Prediction of the Final Settlement Using Preexistence Method and ARIMA Method (기존기법과 ARIMA기법을 활용한 최종 침하량 예측에 관한 비교 연구)

  • Kang, Seyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.29-38
    • /
    • 2019
  • In stability and settlement management of soft ground, the settlement prediction technology has been continuously developed and used to reduce construction cost and confirm the exact land use time. However, the preexistence prediction methods such as hyperbolic method, Asaoka method and Hoshino method are difficult to predict the settlement accurately at the beginning of consolidation because the accurate settlement prediction is possible only after many measurement periods have passed. It is judged as the reason for estimating the future settlement through the proportionality assumption of the slope which the preexistence prediction method computes from the settlement curve. In this study, ARIMA technique is introduced among time series analysis techniques and compared with preexistence prediction methods. ARIMA method was predictable without any distinction of ground conditions, and the results similar to the existing method are predicted early (final settlement).

A Study on the Prediction of Settlement Horizontally Divided Soft Ground (수평 분할된 연약 점성토 지반 침하 예측에 관한 연구)

  • Ryu, Jaeha;Kim, Minsoo;Kim, Yeonjoong;Jung, Chankee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.8
    • /
    • pp.13-19
    • /
    • 2021
  • In the case of construction on soft ground - such as national expressways sponsored by Social Overhead Capital (SOC) - many problems occur due to excessive settlement: therefore, an accurate settlement prediction has a major impact on the selection of improvement methods, project budget and construction period. Most of the settlement prediction methods currently used in projects apply Terzaghi's Theory of One-Dimensional Consolidation which assumes the uniformity of the depth of the soft ground. However, the results of soft ground settlement predictions vary when the target layer is divided into multiple horizontal layers. This study analyzed the change in the consolidation settlement behavior according to the horizontal division of soft ground as well as with different loading height.

Field Measurements of Ground Movements Around Tunnel (현장계측에 의한 터널주변지반의 변위연구)

  • 홍성완;배규진
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.41-54
    • /
    • 1985
  • Generally, ground settlements and lateral displacements are accompanied by underground excavation associated with open-cut or tunnling. These ground movements cause a harmful influence upon nearby super.structures and sub-structures. Occasionally, the ground movements may pose serious problems as the function of the nearby structures may be disrupted. Therefore, prior to the subway construction in an urban area, it is necessary to identify the causes of ground settlements and estimating the extent St the magnitude of ground movements since any potential damage to the nearby structures such as gas lines, water mains, high buildings and cultural assets must be assessed. The research was performed mainly on ground movements such as surface settlements, lateral displacements, subsurface settlements and crown settlements to predict the maximum settlement and settlement zone, and to identify the causes of ground settlements in NATM sections of Busan subway. As a result, it was found that lateral distribution of settlements could be approximated reasonably by a Gaussian normal probability curve and longitudinal distribution of settlements by a cumulative Gaussian probability curve, and that the early closure of temporary invert was very important to minimize ground settlements.

  • PDF

A Study on Settlement Prediction of Concrete-faced Rockfill Dam Using Measured Data During Construction and After Impounding (시공 중 및 담수 후 계측데이터를 이용한 CFRD의 침하량 예측 연구)

  • Lee, Chungwon;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.5-13
    • /
    • 2015
  • In the present study, the prediction methods of the crest settlement after impounding and the maximum internal settlement during dam construction were proposed through the analysis on settlement data at 38 monitored points of 36 Concrete-Faced Rockfill Dams (CFRDs). The results from this analysis provided that the crest settlement and the maximum internal settlement are increased in proportion to the dam height and the void ratio. However, the relationship between internal settlement and dam height for each void-ratio range plotted in semi-logarithmic scale is the nearly same. Also, the prediction of the crest settlement of the CFRD is possible through the maximum internal settlement during dam construction. In addition, it seems that the valley shape highly affects the dense dam body with high construction modulus. The results of this study will provide the useful tool for the design, construction and management of CFRDs.

Settlement Analysis for Improvement Effect of Soft Ground Method in Incheon Cheongna Site (인천 청라지역의 연약지반 개량공법에 따른 지반개량효과 및 침하분석)

  • Kong, Jinyoung;Kim, Heungnam;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.19-26
    • /
    • 2012
  • In this study, characteristics of consolidation settlement of soft grounds adapting preloading method and vertical drain method were compared. A real measurement settlement is compared with predicted one by the future settlement prediction method like the Asaoka's method, the Hyperbolic method and the Hoshino method. A accuracy of predicted future settlement by the Asaoka's method is relatively higher than the Hyperbolic method or the Hoshino method generally. But in the area conducted with the vertical drain method, settlement prediction accuracy of three methods is similar unlike popular beliefs; Asaoka's is the better method for prediction than others. The study area is also confirmed by investigation of the drainage system after applying the change through the N values, soil physical and mechanical properties were investigated, and physical properties are improved.

Prediction of Settlement of SCP Composite Ground using Genetic Algorithm (유전자 알고리즘 기법에 근거한 SCP 복합지반의 침하 예측)

  • 박현일;김윤태;이형주
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.64-74
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay wall, sand compaction pile method (SCP) has widely been applied. Improved ground is composite ground which is consisted of the sand pile-surrounding clayey soil. As caisson and upper structures are installed on SCP composite ground, the settlement is compositively occurred by elastic compression of sand compaction piles and also consolidation of the surrounding clay ground. In this study, the combined settlement model is proposed to predict the settlement of SCP composite ground in basis of elastic theory for sand compaction pile and consolidation theory for marine soft clay. Optimization technique was performed based on back-analysis so that real coded genetic algorithm was applied to estimate the parameters of the proposed settlement model. Case analysis was carried out for a domestic SCP composite ground to examine the applicability of the proposed prediction technique.

Long-term Settlement Prediction of Center-cored Rockfill Dam using Measured Data (계측자료를 이용한 중심코어형 석괴댐의 장기침하량 예측)

  • Lee, Chungwon;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.21-27
    • /
    • 2014
  • In this study, the prediction methods for the crest settlement after impounding and the maximum internal settlement during dam construction were proposed through the analysis on settlement data at 46 monitored points of 37 Center-Cored Rockfill Dams (CCRDs). Results from this analysis provided that the crest settlement increases with elapsed time, and from the relationship between the dam height and the maximum internal settlement during dam construction, it is confirmed that the internal settlement was largely evaluated when the coarse-grained material was used as the dam core. This internal settlement increased in proportion to the dam height. In addition, the crest settlement of the CCRD with the core compacted with fine-grained material was relatively large. It is expected that the results of this study would provide the practical tool for the design, construction and management of CCRDs.

Prediction Technique of Vibration Induced Settlement -On the Basis of Case Studies (지반 진동에 의한 주변침하 예측기법 사례 연구를 중심으로)

  • 김동수;이진선
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.103-116
    • /
    • 1996
  • Man-made vibrations from traffic and construction activities are important because they may cause damage to structures. The current literature provides that damages in the urban areas were not caused by direct transmission of vibration, but rather through subsequent settlement caused by soil densification. In this paper. prediction technique of ground borne vibration induced settlement was introduced on the basis of case studies. In situ application technique of the settlement prediction model developed in laboratary was described, and the predicted settlement was compared with the measured settlement from case studies. The settlement from case studies hlatched well with the settlement calculated from the model. The parametric studies of settlement in typical urban site conditions were performed to determine the sensitive parameters and to develop reliable vibration monitoring and interpretation schemes. These demonstrated the potential usefulness of the model for the evaluation and prediction of the vibration induced in-situ settlement of sands.

  • PDF

A Case Study of Ground Subsidence in a Groundwater-saturated Limestone Mine (지하수로 포화된 석회석광산의 지반침하 사례연구)

  • Choi, Woo-Seok;Kim, Eun-Sup;Kang, Byung-Chun;Shin, Dong-Choon;Kim, Soo-Lo;Baek, Seung-Han
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.511-524
    • /
    • 2015
  • Groundwater causing subsidence in limestone mines is uncommon, and thus relatively poorly investigated. This case study investigated the cause and possibility of future subsidence through an evaluation of ground stability at the Samsung limestone mine, Chungcheongbuk-do. The ground near the mine area was evaluated as unstable due to rainfall permeation, and subsidence in the unmined area resulted from groundwater level drawdown. Future subsidence might occur through the diffusion of subsidence resulting from the small thickness of the mined rock roof, fracture rock joints, and poor ground conditions around the mine. In addition, the risk of additional subsidence by limestone sinkage in corrosion cavities, groundwater level drawdown due to artificial pumping, and rainfall permeation in the limestone zone necessitates reinforcements and other preventative measures.