• Title/Summary/Keyword: 침하율

Search Result 195, Processing Time 0.03 seconds

Seismic Performance Evaluation of Mechanically Jointed PE Pipeline by Response Displacement Method (기계식 이음 PE관의 응답변위법 기반 내진성능평가 요령)

  • DongSoon Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.23-32
    • /
    • 2023
  • The seismic performance of buried PE pipes is reported to be favorable due to their exceptional elongation capacity at break. Although a seismic performance evaluation procedure based on the response displacement method has been summarized in Korea for fusion-bonded PE pipes, there is currently no procedure available for mechanically jointed PE pipes. This article aims to present a seismic performance evaluation procedure based on the response displacement method specifically designed for mechanically jointed PE pipes in Korea. When employing the mechanical joining method for PE pipes, it is recommended to adhere to the evaluation procedure established for segment-type pipes. This involves assessing the stress induced by the pipe, the expansion and contraction strain of the joint, and the bending angle of the pipe joint. Furthermore, the coefficient of inhomogeneity of the soil, which is necessary for estimating the axial strain of the ground, is introduced. Additionally, a computation method for determining lateral displacement and reconsolidation settlement in soil susceptible to liquefaction is proposed. As a result of the sensitivity analysis considering the typical soil condition in Korea, the mechanically jointed PE pipe with a certain quality was shown to have good structural seismic safety when soil liquefaction was not considered. This procedure serves as a valuable tool for seismic design and evaluating the seismic performance of mechanically joined buried PE pipes, which are primarily utilized for connecting small-diameter pipes.

Deep-learning-based GPR Data Interpretation Technique for Detecting Cavities in Urban Roads (도심지 도로 지하공동 탐지를 위한 딥러닝 기반 GPR 자료 해석 기법)

  • Byunghoon, Choi;Sukjoon, Pyun;Woochang, Choi;Churl-hyun, Jo;Jinsung, Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.189-200
    • /
    • 2022
  • Ground subsidence on urban roads is a social issue that can lead to human and property damages. Therefore, it is crucial to detect underground cavities in advance and repair them. Underground cavity detection is mainly performed using ground penetrating radar (GPR) surveys. This process is time-consuming, as a massive amount of GPR data needs to be interpreted, and the results vary depending on the skills and subjectivity of experts. To address these problems, researchers have studied automation and quantification techniques for GPR data interpretation, and recent studies have focused on deep learning-based interpretation techniques. In this study, we described a hyperbolic event detection process based on deep learning for GPR data interpretation. To demonstrate this process, we implemented a series of algorithms introduced in the preexisting research step by step. First, a deep learning-based YOLOv3 object detection model was applied to automatically detect hyperbolic signals. Subsequently, only hyperbolic signals were extracted using the column-connection clustering (C3) algorithm. Finally, the horizontal locations of the underground cavities were determined using regression analysis. The hyperbolic event detection using the YOLOv3 object detection technique achieved 84% precision and a recall score of 92% based on AP50. The predicted horizontal locations of the four underground cavities were approximately 0.12 ~ 0.36 m away from their actual locations. Thus, we confirmed that the existing deep learning-based interpretation technique is reliable with regard to detecting the hyperbolic patterns indicating underground cavities.

Three-Dimensional Limit Equilibrium Stability Analysis of Spile-Reinforced Shallow Tunnel

    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.101-122
    • /
    • 1997
  • A spiting reinforcement system is composed of a series of radially installed reinforcing spites along the perimeter of the tunnel opening ahead of excavation. The reinforcing spill network is extended into the in-situ soil mass both radially and longitudinally The sailing reinforcement system has been successfully used for the construction of underground openings to reinforce weak rock formations on several occasions. The application of this spiting reinforcement system is currently extended to soft ground tunneling in limited occasions because of lack of reliable analysis and design methods. A method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground is presented. The shape of the potential failure wedge for the case of smile-reinforced shallow tunnel is assumed on the basis of the results of three dimensional finite element analyses. A criterion to differentiate the spill-reinforced shallow tunnel from the smile-reinforced deep tunnel is also formulated, where the tunnel depth, soil type, geometry of the tunnel and reinforcing spites, together with soil arching effects, are considered. To examine the suitability of the proposed method of threedimensional stability analysis in practice, overall stability of the spill-reinforced shallow tunnel at facing is evaluated, and the predicted safety factors are compared with results from twotimensional analyses. Using the proposed method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground, a parametric study is also made to investigate the effects of various design parameters such as tunnel depth, smile length and wadial spill spacing. With slight modifications the analytical method of threeiimensional stability analysis proposed may also be extended for the analysis and design of steel pipe reinforced multi -step grouting technique frequently used as a supplementary reinforcing method in soft ground tunnel construction.

  • PDF

Investigation of osseointegration according to the healing time after having iatrogenic mobility of implant fixtures (임플란트 고정체의 인위적 비틀림 후 시간 경과에 따른 골재유착 반응에 관한 연구)

  • Hwang, Yun-Jin;Cho, Jin-Hyun;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.308-314
    • /
    • 2010
  • Purpose: The purpose of this study is to analyze the change in re-osseointegration over time and bone reaction at the interface between implant fixture and the surface of the bone, after destroying re-osseointegration by distorting the bone-implant interface artificially. Materials and methods: Experimental implant fixtures (cp titanium, ${\phi}3.75\;mm{\times}4\;mm$) which didn't have surface treatment were produced. Two or three fixtures were implanted on both tibias of twelve female rabbits (New Zealand white, more than 3.5 kg). Then after six weeks, removal torque (RT) was measured and the results were recorded as the first measurement values. The fixtures were submerged again to get reosseointegration between the bone and fixture. To identify the change in re-osseointegration of submerged fixtures over time, six groups had the healing time for four days (group I), one week (group II), two weeks (group III), three weeks (group IV), four weeks (group V) and five weeks (group VI), and then the secondary removal torque was measured for each group. To identify the bone formation under fluorescent light, tetracycline (15 mg/kg, IM) were treated on the rabbits of each group. After the second measurement, the rabbits were sacrificed, and 16 slides were made, two or three for each group. The slides were observed under the fluorescent light with light microscope. To find out the change in the secondary removal torque over the primary removal torque in progress of time, the averages of the increase rate of the primary and secondary torque removal force were calculated. Then, to find out if there were any critical differences between the primary removal torque and the secondary removal torque in each group and among the groups, the results were analyzed statistically by paired t- test, one-way ANOVA, and Duncan's Multiple Range Test. Results: In group I and II, secondary removal torque decreased, especially in group I. In group III, IV, V, and VI, secondary removal torque increased critically. Comparing the differences among the groups, the critical difference was shown between group I, II and group III, IV, V, VI. Mineralization at the interface between the bone and implant fixture was identified from the first week, and bone formation was shown more clearly from the second week. Conclusion: If the implant fixture remains unforced for a certain period of time after the fixture has had iatrogenic mobility, re-osseointegration occurs at the surface of the fixture, and for tibias of rabbits, higher re-osseointegration was obtained within two weeks.

Characterization of Cigarette Smoke Extract (CSE)-induced Cell Death in Lung Epithelial Cells (폐상피세포에서 흡연추출물-유도성 세포사에 관한 연구)

  • Choi, Eun Kyung;Kim, Yun Seup;Park, Jae Seuk;Jee, Young Koo;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.1
    • /
    • pp.43-53
    • /
    • 2005
  • Emphysema is characterized by air space enlargement and alveolar destruction. The mechanism responsible for the development of emphysema was thought to be protease/antiprotease imbalance and oxidative stress. A very recent study shows that alveolar cell apoptosis causes lung destruction and emphysematous changes. Thus, this study was performed to support the evidence for the role of apoptosis in the development of emphysema by characterizing cigarette smoke extract (CSE)-induced apoptosis in A549 (type II pneumocyte) lung epithelial cells. CSE induced apoptosis at low concentration (10% or less) and both apoptosis and necrosis at high concentration (20%). Apoptosis was demonstrated by DNA fragmentation using FACScan for subG1 fraction. Discrimination between apoptosis and necrosis was done by morphologic analysis using fluorescent microscopy with Hoecst 33342/propium iodide double staing and electron microscopy. Cytochrome c release was confirmed by using immunofluorescence with monoclonal anti-cytochrome c antibody. However, CSE-induced cell death did not show the activation of caspase 3 and was not blocked by caspase inhibitors. This suggests that CSE-induced apoptosis might be caspase-independent apoptosis. CSE-induced cell death was near completely blocked by N-acetylcystein and bcl-2 overexpression protected CSE-induced cell death. This results suggests that CSE might induce apoptosis through intracellular oxidative stress. CSE also activated p53 and functional knock-out of p53 using stable overexpression of HPV-E6 protein inhibited CSE-induced cell death. The characterization of CSE-induced cell death in lung epithelial cells could support the role of lung cell apoptosis in the pathogenesis of emphysema.