• Title/Summary/Keyword: 침투정

Search Result 298, Processing Time 0.027 seconds

Investigation on the Heating Patterns Depending on the Packaging Materials During Microwave Cooking (포장 소재에 따른 전자레인지 가열 조리 패턴 조사)

  • Lee, Hwa Shin;Cho, Ah Reum;Moon, Sang Kwon;Yoon, Chan Suk;Lee, Keun Taik
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • Heating patterns depending on the packaging materials were examined in order to investigate the causes of thermal deformation of packages used for ready-to-eat foods for microwave heating due to the non-uniformity of microwaves. Physical properties including tensile strength, heat-resistance and elongation of four different CPP grades were compared. High retortable CPP had higher sealing strength and heat resistance compared to the conventional CPPs. All CPP samples tested were proved to have melting temperatures around $160^{\circ}C$. However, they were all thermally deformed by microwave heating due to a limited penetration of microwave and non-uniform heating within the spicy sauce of high viscosity contained high salt, especially on the above the filling line and sealing edge of pouches. When the laminated stand-up pouches composed of G-PET/PET/PET/CPP and G-PET/PET/NY/CPP were retorted and microwaved, significant deformations were noticed in both samples after retorting. Besides, pouches contained titanium dioxide showed more intense thermal deformation than the control. When the $10{\mu}m$ aluminium foil was affixed on the pouch, small thermal deformation was observed only in the bottom layer. More studies are required to prevent the thermal deformation of packaging materials used for RTE foods during microwave heating by developing the technologies to increase the thermal stability of CPP layer and the modification of packaging design to modify the microwave access into the package.

  • PDF

Influence of Forest Management on the Facility of Purifying Water Quality in Abies holophylla and Pinus koraiensis Watershed (I) (전나무림, 잣나무림 유역(流域)에서 산림시업(山林施業)이 산림(山林)의 수질정화기능(水質淨火機能)에 미치는 영향(影響)(I))

  • Jeong, Yongho;Park, Jae Hyeon;Kim, Kyong Ha;Lee, Bongsoo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.3
    • /
    • pp.364-373
    • /
    • 1999
  • This study aims to clarify the effect of forest management practices(thinning and pruning) on soil physical properties and water quality to get the fundamental information on the facility of purifying water quality after forestry practices. Rainfall, throughfall, stemflow, soil and stream water were sampled at the study sites which consist of Abies holophylla and Pinus koraiensis, in Kwangnung Experimental Forest for 6 months from March 1 to August 7, 1998. Average tree height of the management site increased by 1.8m and 0.6m more than that of the non-management site in Abies holophylla and Pinus koraiensis, respectively. Increment of average D.B.H. at the management site showed 4.7cm and 1.4cm more in Abies holophylla and Pinus koraiensis compared with that at non-management sites. Coarse(less than pF2.7) and total porosities of A layer soil at the management site increased more than those at the non-management sites in both stands. Otherwise, soil bulk density resulted in being reversely. Water qualities of throughfall, stemflow and soil water were buffered more by the management practice in both.

  • PDF

Fluctuation Features and Numerical Model for Underground Temperature in Shallow Subsurface Soil (천층 토양 내 지중온도 변동 특성과 수치모델 평가)

  • Jeong, Jaehoon;Kim, Gyoobum;Park, Hyoungki;Kim, Hyoungsoo;Kim, Taehyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.35-42
    • /
    • 2015
  • This is conducted to observe underground temperature and to analyze its change affected by climate condition and soil infiltration in the mountainous area, Yesan region, Chungcheong-namdo province. Additionally, underground temperature change is also simulated using air temperature and soil thermal properties with a numerical model. Soil temperature monitoring data acquired from each depth, 20 cm, 50 cm, and 100 cm, indicates that the data within 50 cm in depth shows peak-shaped big fluctuation directly affected by air temperature and it at 100 cm has open-shaped small fluctuation. Underground temperature variation, a difference between high and low values, during monitoring period is weakly proportional to hydraulic conductivity of the sediment and it is assumed that water plays a part in delivering air temperature in soil. The underground temperature estimated by a numerical model is very similar to the observed data with an average value of 0.99 cross-correlation coefficient. From the result of this study, the aquifer unsaturated hydraulic conductivity of the soil and the groundwater recharge is likely to be able to estimate with underground temperature profile calculated using a numerical model.

Comparison of Test Methods for Evaluation of Chloride Diffusion Coefficient in Concrete (콘크리트의 염소이온 확산계수 평가를 위한 시험방법 비교)

  • Lee, Chan-Young;Kim, Hong-Sam;Kim, Jin-Cheol;Cheong, Hai-Moon;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.581-584
    • /
    • 2008
  • Generally, durability of concrete structures under marine environment is grossly declined by detrimental ions such as chlorides, which penetrate concrete and was diffused to corrode reinforcing rod. Therefore, chloride diffusion properties in concrete are important for durability evaluation and design of concrete structure. For estimation of chloride diffusion coefficient in concrete, both evaluation methods are used for steady state and non-steady state derived from Fick's 1st and 2nd law, respectively. However, as it is very difficult to evaluate diffusion coefficient for non-steady state like service environment where concrete is actually exposed, indirect evaluation method by laboratory accelerated test is generally used. In this study, comparison of chloride diffusion behavior was investigated for fixed mix proportion and age of concrete using four accelerated test methods based on domestic and foreign standards. From test results, only relative comparison between concrete mixtures was possible using ASTM C 1202 test, and diffusion coefficient for steady state was estimated as low as 1/10 of that for non-steady state. In addition, diffusion coefficient estimated by immersion test was similar to result by NT build 492 test.

  • PDF

Preparation of Dextran Microparticles by Using the SAS Process (초임계 반용매 재결정 공정을 이용한 Dextran 입자의 제조)

  • Kang, Dong-Yuk;Min, Byoung-Jun;Rho, Seon-Gyun;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.958-964
    • /
    • 2008
  • In this work, micro-sized dextran particles, which have recently been focused as one of the candidate materials for the Drug Delivery System(DDS), were prepared by means of the Supercritical Antisolvent (SAS) process with $CO_2$. With dimethyl sulfoxide(DMSO) as the solvent, effects of the operating variables such as temperature (308.15~323.15 K), pressure(90~130 bar), solute concentration(10~20 mg/ml), and the molecular weight of the solute(Mw=37,500, 450,000) on the size and morphology of the resulting particles were thoroughly observed. The higher solute concentration led to the larger particles, however, the injection velocity of the solution and pressure did not show significant effects on the resulting particle size. With dextran of the lower molecular weight, the smallest particles were obtained at 313.15 K. On the other hand, the size of the particles from the high molecular weight dextran ranged between $0.1{\sim}0.5{\mu}m$ with an incremental effect of the temperature and pressure. For the solute concentration of 5 mg/ml, the lower molecular weight dextran did not form discrete particles while aggregation of the particles appeared when the solute concentration exceeded 15 mg/ml for the higher molecular weight dextran. It is believed that if the solute concentration is too low, the degree of the supersaturation in the recrystallization chamber would not be sufficient for initiation of the nucleation and growth mechanism. Instead, the spinodal decomposition mechanism leads to formation of the island-like phase separation which appears similar to aggregation of the discrete particles. This effect would be more pronounced for the smaller molecular weight polymer system due to the narrower phase-splitting region.

Basic Study on the Characteristics of Wooden Sidewalk Pavement Material using Wood Waste Chip (폐목재 칩을 활용한 목질계 보도포장재의 특성에 대한 기초연구)

  • Choi, Jae Jin;Song, Jin Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.413-420
    • /
    • 2011
  • An experiment was conducted to suggest the road pavement material combining wooden chip crushed from little useful roots and branches from logging sites or wood waste from construction sites with urethane resin. For the specimen, the mass ratio of urethane resin to construction wood waste chip/lumber waster chip was set to three different levels of 0.5, 0.75, and 1.0, which was measured, mixed with mixer, and molded; 7 days after, tensile strength test, elasticity test using golf balls and steel balls, permeability coefficient measurement, and flammability test were executed. As the result, the tensile strength of the specimen at the dry state in the air exhibited the range of 0.2-1.1MPa, and there was no change after 7 days of aging. When submerged in water, however, the strength was partially diminished; the diminishing rate was greater for less urethane resin usage, and therefore it appears desirable to set the mass ratio of resin to the wood waste chip over 0.75 to consider the moisture intrusion by precipitation and such. As the result of elasticity test, the GB and SB coefficients of the specimen using wood waste chips and urethane resin were measured to be low at below 20%, exhibiting excellent elasticity as road pavement material. Also, the permeability coefficient was over 0.5mm/sec for specimens of all combinations, exceeding the standard value required after construction for permeable pavement material, and the flammability of wood-type pavement material was evaluated to have no practical issues.

Flexure and tension tests of newly developed ceramic woven fabric/ceramic matrix composites (새로 개발된 세라믹 직포 보강 세라믹 기지 복합체의 인장 및 곡강도 시험)

  • Dong-Woo Shin;Jin-Sung Lee;Chang-Sung Lim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.73-87
    • /
    • 1996
  • The mechanical properties of 2D ceramic composites fabricated bythe newly developed powder infiltration and subsequent multiple impregnation process were characterised by both 3-point flexure and tensile tests. These tests were performed with strain gauge and acoustic emission instrument. The woven fabric composites used for the test have the basic combinations of $Al_{2}$$O_{3}$ fabric/$Al_{2}$$O_{3}$ and SiC fabric (Tyranno)/SiC. Uniaxially aligned SiC fibre(Textron SCS-6)/SiC composites were also tested for comparison, The ultimate flexural strength and first-matrix cracking stress of SiC fabric/SiC composite with 73% of theoretical density were about 300 MPa and 77 MPa respectively. However, the ultimate tensile strengths of composite were generally one third of flexural strengths, and first-matrix cracking stress in a tension test was also much lower than the value obtained from flexure test. The lower mechanical properties measured by tension test were analysed quantitatively bythe differences in stressed volume using Weibull statistics. This showed that the ultimate strength and the firs-tmatrix cracking stress of woven laminate composites were mainly determined bythe gauge length of fibres and the stressed volume of matrix respectively. Incorporation of SiC whiskers into the matrix increased first-matrix cracking stress by increasing the matrix failure strain of composites.

  • PDF

Durability Characteristics of Ternary Cement Matrix Using Ferronickel Slag According to the Alkali-Activators (알칼리 활성화제 종류별 페로니켈슬래그를 사용한 3성분계 시멘트 경화체의 내구특성)

  • Cho, Won-Jung;Park, Eon-Sang;Jung, Ho-Seop;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.190-197
    • /
    • 2020
  • This paper evaluates the mechanical properties and durability of cement matrix blended with mineral admixtures and ferronickel slag(FNS) powder which is an industrial b y-product during ferronickel smelting process. The hydration heat, pore structure, compressive strength, length change, rapid chloride penetration test(RCPT), and freezing and thawing resistance of ternary blended cement matrix were investigated and compared with ordinary portland cement matrix. The result showed that the compressive strength of ternary blended cement matrix using ferronickel slag powder and mineral mixture was low in strength compared to the reference concrete, but recovered to a certain extent by using alkali activator. Length change of cement mortar using FNS powder have shown less shrinkage occurs than the reference specimen. In addition, irrespective of using the alkali-activators, all ternary mix are indicative of the 'very low' range for chloride ion penetrability according to the ASTM C 1202, and the freeze-thaw resistance also showed excellent results.

Soil Water Characteristic Curve of the Weathered Granite Soil through Simulated Rainfall System and SWCC Cell Test (강우재현 모형실험과 SWCC Cell 실험에 의한 화강암질 풍화토의 함수특성곡선)

  • Ki, Wan-Seo;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.523-535
    • /
    • 2008
  • A simulated rainfall system was built, and the unsaturated characteristics were examined by execution of simulated rainfall system test and soil water characteristic curve cell test(SWCC Cell Test) under the various rainfall and slope conditions. With the results, the applicability of infiltration behavior under rainfall and soil water characteristic curve models to the unsaturated weathered granite soil was examined. At the results of comparison the volumetric water content and matric suction measured in the wetting process(under rainfall) with those in the drying process(leaving as it was) of the simulated rainfall system, the volumetric water content showed a difference of $2{\sim}5%$ and matric suction of about $3{\sim}10\;kPa$, indicating the occurrence of hysteresis. In addition, the difference was relatively larger in matric suction than in the volumetric water content, and this tells that the hysteresis behavior is larger in matric suction. When the soil water characteristic curve derived from measurements in simulated rainfall system test were compared with those from the soil water characteristic curve cell test, both methods produced soil water characteristic curves close each other in the wetting process and the drying process, but in both, there was a difference between results obtained from in the wetting process and those from in the drying process. Thus, when soil water characteristic curves are rationally applied to the design and stability analysis considering of the properties of unsaturated soil, it is considered desirable to apply the soil water characteristic curve of the wetting process to the wetting process, and that of the drying process to the drying process.

Analysis of Hydraulic Gradient at Coastal Aquifers in Eastern Part of Jeju Island (제주도 동부지역 해안대수층의 조석에 의한 수리경사 변화 연구)

  • Kim, Kue-Young;Shim, Byoung-Ohan;Park, Ki-Hwa;Kim, Tae-Hee;Seong, Hyeon-Jeong;Park, Yun-Seok;Koh, Gi-Won;Woo, Nam-Chil
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.79-89
    • /
    • 2005
  • Groundwater level changes in coastal aquifers occur due to oceanic tides, where the properties of oceanic tides can be applied to estimate hyadraulic parameters. Hydraulic parameters of coastal aquifers located in eastern part of Jeju island were estimated using the tidal response technique. Groundwater level data from a saltwater intrusion monitoring well system was used which showed tidal effects from 3 to 5 km. The hydraulic gradient was assessed by utilizing the filtering method from 71 consecutive hourly water-level observations. Calculated hydraulic diffusivity ranged from 2.94${\times}10^7m^2d^{-1}$ to 4.36${\times}10^7m^2d^{-1}$ . The hydraulic gradient of the coastal aquifer area was found to be ~$10^{-4}$, whereas the gradient of the area between wells Handong-1 and 2 was found to be ~$10^{-6}$, which is very low comparatively. Analysis of groundwater monitoring data showed that groundwater levels are periodically higher near coastal areas compared to that of inner land areas due to oceanic tide influences. When assessing groundwater flow direction in coastal aquifers it is important to consider tidal fluctuation.