• Title/Summary/Keyword: 침전지역

Search Result 213, Processing Time 0.022 seconds

Mineralogy and Geochemistry of Iron Hydroxides in the Stream of Abandoned Gold Mine in Kwangyang, Korea (광양 폐금광 수계에 형성된 철수산화물에 대한 광물학적 및 지구화학적 특성)

  • Park, Cheon-Young;Jeoung, Yeon-Joong;Kim, Seoung-Ku
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.208-222
    • /
    • 2001
  • Geochemical investigations on suspended amorphous iron oxide material from the Kwangyang gold mine and its surrounding area, Cheonnam, Korea have been carried out. The sediments samples were collected from 11 location along Kwangyang mine area and were air dried and sieved to -80 mesh. These samples consist mainly of iron, silicon and alumina. The Fe$_2$O$_3$ contents ranges from 17.9 wt.% to 72.3 wt.%. The content of Fe$_2$O$_3$ increase with decreasing Si, Al, Mg, Na, K, Mn, and Ti, whereas the contents of Te, Au, Ga, Bi, Cd, Hg, Sb, and Se increase in the amorphous stream sediments. Amorphous stream sediments have been severely enriched for As (up to 54.9 ppm), Bi (up to 3.77 ppm), Cd (up to 3.65 ppm), Hg (up to 64 ppm), Sb (up to 10.1 ppm), Cu (up to 37.1 ppm), Mo (up to 8.86 ppm), Pb (up to 9.45 ppm) and Zn (up to 29.7 ppm). At the upstream site, the Au content (up to 4.4 ppm) in the amorphous stream sediments are relatively high but those contents decrease with distance of mine location. The content of Ag (up to 0.24 ppm) were low in upstream site but those contents increase significantly in the downstream sites. The X-ray diffraction patterns of the samples have virtually no sharp and discrete peaks, indicating that some samples are amorphous or poorly-ordered. The quartz, goethite, kaolinite and illite were associated in amorphous stream sediments. The infrared spectra for amorphous stream sediments show major absorption bands due to OH stretching, adsorbed molecular water, sulfate and Fe-O stretching, respectively.

  • PDF

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF

Simultaneous Concentration and Determination of Several Trace Elements in Sea Water by Ce(OH)$_3$ Coprecipitation (Ce(OH)$_3$의 공침부선에 의한 해주중 몇 가지 미량원소의 동시 농축 및 정량)

  • Woo-Sik Sung;Hee-Seon Choi;Young-Sang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.327-333
    • /
    • 1993
  • A method was developed for the determination of trace elements in seawater by precipitate flotation preconcentration and subsequent flame atomic absorption detection. In order to quantitatively coprecipitate trace ions such as Cd(II), CuI(II), Fe(III), Mn(II), Pb(II) and Pd(II), 2.0 ml of 1.0M cerium(III) solution was added to 1.0l of seawater and the pH was adjusted to 9.5 with 5.0 M sodium hydroxide solution while stirring with a magnetic stirrer. The precipitate was floated with the aid of surfactant solution (1.0 ml of 0.3% sodium oleate) by bubbling nitrogen gas through a porous (No. 4) fritted glass disk. The floats was collected in a small Erlenmeyer flask by suction. The washed precipitate was dissolved in 8.0 M nitric acid and marked with deionized water in the volumetric flask of 10.0 ml. The analyte was determined by measuring the atomic absorbances in 100-fold concentrated solution. Above all analytes in Kangnung (East Sea) and Kanghwado (West Sea) sea waters were found to be under the detection limit of this method. The recoveries of over 92% for all analytes spiked into seawater samples showed that this method was applicable to the analysis of real seawater.

  • PDF

Geochemistry and Mineralogical Characteristics of Precipitate formed at Some Mineral Water Springs in Gyeongbuk Province, Korea (경북지역 주요 약수의 지화학과 침전물의 광물학적 특성)

  • Choo, Chang-Oh;Lee, Jin-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2009
  • Mineralogical characteristics of secondary precipitate formed at some mineral water springs in Gyeongbuk Province, Korea were studied in relation to water chemistry. The chemical water types of mineral water springs are mostly classified as $Ca-HCO_3$ type, but $Na(Ca)-HCO_3$ and $Ca-SO_4$ types are also recognized. Ca, Fe, and $HCO_3\;^-$ are the most abundant components in the water. The pH values of most springs lie in 5.76${\sim}$6.81, except Hwangsu spring having pH 2.8. Saturation indices show that all springs are supersaturated with respect to iron minerals and oxyhydroxides such as hematite and goethite. The result of particle size analysis shows that the precipitate is composed of the composite with various sizes, indicating the presence of iron minerals susceptible to a phase transition at varying water chemistry or the mixtures consisting of various mineral species. The particle size of the reddish precipitate is larger than that of the yellow brown precipitate. Based on XRD and SEM analyses, the precipitate is mostly composed of ferrihydrite (two-line type), goethite, schwertmannite, and calcite, with lesser silicates and manganese minerals. The most abundant mineral fanned at springs is ferrihydrite whose crystals are $0.1{\sim}2\;{\mu}m$ with an average of $0.5\;{\mu}m$ in size, characterized by a spherical form. It should be interestingly noted that schwertmannite forms at Hwangsu spring whose pH is very low. At Shinchon spring, Gallionella ferruginea, one of the iron bacteria, is commonly found as an indicator of the important microbial activity ascribed to the formation of iron minerals because very fine iron oxides with a spherical form are closely distributed on surfaces of the bacteria. A genetic relationship between the water chemistry and the formation of the secondary precipitate from mineral water springs was discussed.

Remediation Process by using Lime and Calcium Carbonate for Heavy Metal Contaminated Groundwater Originated from Landfills (소석회$(Ca(OH)_2)$와 탄산칼슘$(CaCO_3)$을 이용한 매립장 주변 중금속 오염 지하수 정화)

  • Song Nain;Lee Yesun;Lee Minhee
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.273-284
    • /
    • 2005
  • Coagulation and precipitation process by using lime$(Ca(OH)_2)$ and calcium carbonate $(CaCO_3)$ were applied to remove heavy metals from groundwater in laboratory scale. From results of batch tests, by the addition of $0.3\;wt.\%$ lime, more than $90\%$ of As and Mn were removed and $70-80\%$ of Cd and Zn were removed by using $0.5\;wt.\%$ of lime. Removal efficiency of Pb almost reached $100\%$ with only $0.1\;wt.\%$ of calcium carbonate and more than $93\%$ of Cd were removed by the addition of $0.1\;wt.\%$of calcium carbonate. Pilot scale column experiments were performed to remove heavy metals in the separation process of precipitated Hoc to supernatant after the coagulation/ precipitation. For lime as a coagulant, more than $99\%$of As were removed from artificial groundwater and removal efficiencies of Cd, Mn, and Zn were over $80\%$. By using calcium carbonate, more than $95\%$ of Cd and Pb were removed in column experiment. Fe and Mn contaminated groundwater taken from a real landfill site, Ulsan was used for the column experiment and more than $99\%$ of Fe and Mn were removed by the addition of $1\;wt.\%$ lime in column experiment, suggesting that the coagulation/precipitation process by using lime and calcium carbonate have a great possibility to remove heavy metals from contaminated groundwater.

Characteristics of Stormwater Treatment in Construction Site (건설 현장 내 비점오염원 처리 특성 평가)

  • Choi, Younghoa;Kim, Changryong;Kim, Hyosang;Oh, Jihyun;Jeong, Soelhwa
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.69-75
    • /
    • 2010
  • Total suspendid solid (TSS) of non point source pollutants in construction site are in higher concentration than others (BOD, COD etc). Also, the TSS concentration is very sensitive to the rainfall intensity in early stage of construction. There are two methods for treatment of non point source pollutants, which are temporary treatment facility and filtering one. But they have disadvantages. Temporary facility system has very low efficiency and filtering system consumes high energy and takes up large footprint. This study shows how prefabricated flocculation/coagulation system is developped to cover the above weakness and evaluation of the system performance in construction site. The prefabricated flocculation/coagulation system has very high treatment efficiency comparing with temporary and filtering system and takes small footprint. Therefore, it expects that the system leads to prevention of pollution near construction site and reduction of public grievance. Proper coagulant dosage and sludge circulation facility application, controlling the height of sludge interfacial are necessary to maximize the system efficiency.

Effects of pH and slow mixing conditions on heavy metal hydroxide precipitation (pH와 완속교반 조건에 따른 중금속 수산화물 화학침전 특성)

  • Park, Jong-Hun;Choi, Gyu-Jin;Kim, Sang-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.50-56
    • /
    • 2014
  • Conventional coagulation-gravity settling processes in heavy metal removal have a problem in coagulant cost and instability of the settling efficiency. The authors investigated the effects of pH and slow mixing conditions on heavy metal hydroxide precipitation and the particle size distribution of the precipitate for a precipitation-membrane separation process. The optimum pH values for the hydroxide precipitation ranged from 9 to 10. The addition of $FeCl_3$ did not enhance the heavy metal removal. 20 min of slow mixing at 70 rpm showed the maximum heavy metal removal to meet the water quality criteria for effluent discharge. More than 99.9% of the heavy metal precipitate particles were bigger than $2{\mu}m$.

Water Flow Distribution and Sedimentation Characteristics of Particle Materials in the Sihwa Constructed Wetland (시화호 인공습지의 물흐름 분포 및 입자성물질 퇴적 특성)

  • Choi, Dong-Ho;Choi, Kwang-Soon;Kim, Sea-Won;Oh, Young-Taek;Kim, Dong-Sup;Joh, Seong-Ju;Park, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.425-437
    • /
    • 2007
  • Flow distribution of water and sedimentation rate were investigated to understand the hydrodynamics and settling characteristics of particulate materials in a constructed wetland for treatment of non-point sources pollutants, the Sihwa constructed wetland, Korea. The Sihwa constructed wetland is divided into three sub-wetlands(the Banwol, the Donghwa and the Samhwa wetlands) to treat the polluted water from three streams, the Banwol stream, the Donghwa stream and the Samhwa stream. From the results of water flow experiment using dye(Rhodamine 50WT Red), it was found that the water flow in the wetland was prevailing at the waterway and open water. Dye was spread slowly in the closed water area planted by plants. The mean hydraulic retention time(HRT) at the upper area of high wetland and lower wetland of Banwol, was found to be 34.1 hr at the upper area and 74.6 hr at the lower area respectively, totaling approximately 108.7 hr(4.5 days). The sedimentation rate was higher at lower area(sites of B, C and D) of the wetland than upper area(site of A which is settling zone). Based on the forecast for 20 years as to the amount of sediment that can be deposited in the open water in the future, the sediment depth of each area would be like this: A: 6.3 cm, B: 8.3 cm, C: 7.0 cm, D: 9.5 cm. The contents of organic materials in the sediment deposited within the sediment trap were found to be higher overly in the first investigation period which had much rainfall, and B, C and D areas were found to have an increased COD accumulation than A area. Also, nitrogen and phosphorus were found to increase in the down-stream of the wetland. The results of this study suggest that a sustainable research and management for the characteristics of water flow pattern and sedimentation changeable as time passes is needs to maintain or improve the efficiency of water treatment in the constructed wetland.

Design Technique of First Flush Treatment System Using Waterside Land (제외지 지하공간을 활용한 초기우수 제어 시스템 설계기술)

  • Seo, Dongil;Koo, Young Min;Kim, Jaeyoung;Kim, Byung R.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.652-652
    • /
    • 2015
  • 도시유역의 소하천은 불투수 면적의 증가 및 우수관거의 설치로 인해 오염물질 및 강우의 유달률이 증가한 반면 침투 및 저류 기능의 감소로 인해 지하수위가 저하되어 비강우시에 현저하게 유량이 감소되어 하천환경에 심각한 문제를 나타내고 있다. 이러한 문제를 해결하기 위해 다수의 연구에서 유역에 저영향개발기술을 제안하고 있으나 이들은 과다한 면적을 필요로 함에 따라 설치 및 유지관리에 많은 비용이 발생하고 기존에 개발되어 있는 도시유역에 적용하기 어렵다는 문제점이 있다. 본 연구에서는 도시 소하천의 유량과 수질 문제를 저감하기 위해 위와 같은 문제점을 고려하여 하천 제외지 지하공간을 이용하여 초기 우수 제어 시스템을 개발하고자 하였다. 본 시스템은 도시유역에서 강우에 의해 초기에 오염물질이 다량으로 유출되는 소위 초기세척효과를 제어하기 위해 침전시스템을 설치하고 및 교체가 가능한 카트리지형 여과 시스템으로 구성하였다. 여과 시스템에서 섬유필터를 이용하여 수질을 개선하고 또한 침전 및 여과시스템에 저류가 가능하도록 하여 도시 소하천의 유량에 따라 방류를 조절함으로써 도시 하천의 건천화 감소에 도움이 되도록 구성하였다. 또한 초기우수 제어 시스템을 효율적으로 운영하기 위해 SWMM(Storm Water Management Model) 적용 결과와 자동모니터링 스시템을 활용하는 종합설계 및 관리시스템을 개발하고 있다. 이를 위해 시범 유역에 SWMM을 구축하고 보정 및 검증을 실시하였다. ?측 및 SWMM을 이용하여 계산한 결과 연구대상 지역에서 처리시설에서 수용할 수 있는 초기우수유출량의 적정량은 초기강우 4시간 또는 6 mm의 누적강우량으로 산정되었으며 이를 토대로 현장의 지형여건에 따라 시스템의 설계기준이 수립될 수 있다.

  • PDF

Neutralization of Acid Rock Drainage from the Dongrae Pyrophyllite Deposit: A Study on Behavior of Heavy Metals (동래 납석광산 산성 광석배수의 중화실험: 중금속의 거동 특성 규명)

  • 염승준;윤성택;김주환;박맹언
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.68-76
    • /
    • 2002
  • In this study, we have investigated the geochemical behavior and fate of heavy metals in acid rock drainage (ARD). The ARD was collected from the area of the former Dongrae pyrophyllite mine. The Dongrae Creek waters were strongly acidic (pH : 2.3~4.2) and contained high concentrations of $SO_4$, Al, Fe, Mn, Pb, Cu, Zn, and Cd, due to the influence of ARD generated from weathering of pyrite-rich pyrophyllite ores. However, the water quality gradually improved as the water flows downstream. In view of the change of mole fractions of dissolved Fe, Al and Mn, the generated ARD was initially both Fe- and AA-ich but progressively evolved to more Al-rich toward the confluence with the uncontaminated Suyoung River. As the AR3 (pH 2.3) mixed with the uncontaminated waters (pH 6.5), the pH increased up to 4.2, which caused precipitation of $SO_4$-rich Fe hydroxysulfate as a red-colored, massive ferricrete precipitate throughout the Dongrae Creek. Accompanying the precipitation of ferricrete, the Dongrae Creek water progressively changed to more Al-rich toward downstream sites. At the mouth of the Dongrae Creek, it (pH 3.4) mixed with the Suyoung River (pH 6.9), where pH increased to 5.7, causing precipitation of Al hydroxysulfate (white precipitates). Neutralization of the ARD-contaminated waters in the laboratory caused the successive formation of Fe precipitates at pH<3.5 and Al precipitates at higher pH (4~6). Manganese compounds were precipitated at pH>6. The removal of trace metals was dependent on the precipitation of these compounds, which acted as sorbents. The pHs for 50% sorption ($pH_{50}$) in Fe-rich and Al-rich waters were respectively 3.2 and 4.5 for Pb, 4.5 and 5.8 for Cu, 5.2 and 7.4 for Cd, and 5.8 and 7.0 for Zn. This indicates that the trace metals were sorbed preferentially with increasing pH in the general order of Pb, Cu, Cd, and Zn and that the sorption of trace metals in Al-rich water occurred at higher pH than those in Fe-rich water. The results of this study demonstrated that the partitioning of trace metals in ARD is not only a function of pH, but also depends on the chemical composition of the water.