기존 디지털 출력 방식의 PIR 센서를 이용한 침입감지 시스템은 사람이 아닌 다른 물체에 대한 침입 탐지 오류가 많았다. 본 논문은 이를 극복하기 위하여 아날로그 출력 방식의 PIR 센서 기반 침입 감지 시스템을 제안한다. 아날로그 방식 PIR 센서는 임계값을 기준으로 이진 출력값 대신, 일정 범위 내의 다양한 전압 준위로 출력값을 내보낸다. 아날로그 PIR 센서를 이용하여 획득된 신호의 샘플링된 신호값으로부터 FFT(Fast Fourier Transform) 또는 MFCC(Mel-frequency cepstrum codfficents)을 이용하여 신호의 주파수 성분을 추출하여, 인공 신경회로망(Artificial Neural Network)의 특징벡터로 사용된다. 다양한 인간의 움직임과 애완동물의 움직임에 대한 신호 패턴들을 학습한 인공 신경회로망을 통해서 침입상황에서 침입한 객체가 사람인지 애완동물인지 판별하게 된다.
인터넷 사용이 보편화됨에 따라 기존의 방화벽만으로는 탐지가 불가능한 웹 서버의 취약점을 이용한 공격이 나날이 증가하고 있다. 그 중에서도 특히 웹 어플리케이션의 프로그래밍 오류를 이용한 침입이 공격 수단의 대부분을 차지하고 있다. 본 논문에서는 웹 어플리케이션의 취약점을 분석한 후 취약점 발생 부분에 대해 웹 서버 전용으로 로그 분석을 해 주는 실시간 에이저트를 도입하였다. 실시간 에이전트는 공격 패턴을 비교 분석한 후 프로세스 분석기를 통한 결정(decision) 과정을 통해 침입으로 판단되면 해당 접속 프로세스(pid)를 제거한 후 공격 아이피를 차단함으로서 침입을 탐지하는 모델을 제시한다.
본 연구에서는 실제 야외 환경에서 얻어지는 영상열에서 차영상 기법을 이용하여 침입자를 감지하는 보안 시스템에서 필요한 참고영상 갱신 방안을 제안한다. 제안된 방법은 선별적 참고영상 갱신방법의 영역판별 오류에 의한 영향을 미디언 필터링(Median Filtering)을 이용하여 최소화하였다. 먼저, 연속적으로 들어오는 입력영상과 참고영상의 차영상을 얻어 상향조정된 임계치를 이용하여 이동물체 영역이 제거된 선별적인 임시영상을 생성한다. 그리고 조명의 변화나 이동물체의 외곽에 반응하는 배경물체의 오류를 제거하기 위해 미디언 필터링을 수행함으로써 불규칙적으로 발생하는 밝기변화에 적응할 수 있게 한다. 제안된 방법을 실제 야외 상황에서 얻은 다양한 영상열에 적용한 결과 기존의 참고영상 갱신방법보다 주위 잡음과 무관한 참고영상을 생성한 수 있었다.
현재 일반화되어 있는 침입탐지 시스템의 경우 중요한 서버의 보안에 유용한 호스트기반 IDS는 합법적인 사용자의 불법행위를 모니터링 가능하고 운영체계와 밀접히 결합하여 보다 정교한 모니터링, 네트워크 환경과 상관없이 사용가능 하다는 장점이 있지만 비용의 증가와 침입탐지를 위한 처리에 해당 시스템 자원소모, 네트워크 기반의 공격에 취약하며 IDS오류 시 해당 호스트의 기능이 마비될 수 있다. 네트워크기반 IDS는 네트워크 엑세스 지점에만 설치하여 비용점감 및 네트워크 자원에 대한 오버 헤드감소, 공격에 노출될 가능성이 낮으며 네트워크 환경에 관계없이 사용가능하지만 대용량의 트래픽 처리에 어려움과 제한된 탐지능력, 알려지지 않은 악성코드나 프로그램에 대처능력이 떨어지는 한계를 가지고 있다. 본 논문에서는 이러한 보안 솔루션들 중에서 개인용 방화벽을 활용하는 데스크톱 보안과 함께 적용하여 개인용 컴퓨터의 보안능력을 향상시키는 유출 트래픽 분석기반 침입탐지시스템의 설계 및 구현을 목적으로 한다. 침입이 발생하고 새로운 패턴의 악성 프로그램이 정보의 유출을 시도하는 행위를 탐지하여 차단함으로써 컴퓨터나 네트워크의 심각한 손실을 감소시킬 수 있다.
네트워크 대역폭과 침입기술의 발달하는 상황에서 침입탐지 시스템의 패턴 매칭 방식으로는 대용량화된 모든 패킷을 기존의 침입탐지 시스템의 패턴 매치 방식으로 패턴을 분석하는 것에는 한계가 발생한다. 패킷들이 단편화되어 수신될 때 패킷들을 효율성 있게 탐지하기 위해서 Esnort (1)와 같은 운영체제에 일치되는 패킷들의 패턴만 매치하는 방법이 제시되었다. Esnort의 기본 매커니즘인 NMAP을 이용하여 동일한 네트워크의 시스템의 운영체제를 스캔하여 스캔된 정보와 수신된 패킷과 동일한 운영체제만을 선별하여 패턴 매치를 적용하여 패턴 매치의 성능을 개선하였다. 하지만 운영체제의 종류가 다양해지고 nmap의 운영체제 식별의 오류로 수신된 패킷이 무시되어 인입되는 경우가 발생할 수 있다. 본 연구에서는 유동적인 사용자의 시스템 환경과 독립적으로 침입탐지 시스템의 패턴의 해시화를 통해 해시테이블을 생성하여 패턴 매치의 시간을 단축는 개선된 침입탐지 시스템을 제시하고 검증하고자 한다.
최근 바이러스가 날로 지능화되고 있고 해킹수법이 교묘해지면서 이에 대응하는 보안기술 또한 발전을 거듭하고 있다. 팀 주소 등을 통해 네트워크를 관리하는 방화벽과 방화벽을 뚫고 침입한 해커를 탐지해 알려주는 침입탐지시스템(IDS)에 이어 최근에는 침입을 사전에 차단한다는 측면에서 한 단계 진보한 IDS라고 볼 수 있는 침입방지시스템(IPS)이 보안기술의 새로운 패러다임으로 인식되고 있다. 그러나 현재 대부분의 침입방지시스템은 정상 트래픽과 공격트래픽을 실시간으로 오류없이 구별할 수 있는 정확성과 사후공격패턴분석 능력 등을 보장하지 못하고 기존의 침입 탐지시스템 위에 단순히 패킷 차단 기능을 추가한 과도기적 형태를 취하고 있다. 이에 본 논문에서는 침입방지시스템의 패킷 분석 능력과 공격에 대한 실시간 대응성을 높이기 위하여 netfilter 시스템을 기반으로 커널 레벨에서 동작하는 침입 탐지 프레임워크와, iptables를 이용한 패킷 필터링 기술에 CBQ 기반의 QoS 메커니즘을 적용한 비정상 트래픽 제어 기술을 제시한다. 이는 분석된 트래픽의 침입 유형에 따라 패킷의 대역폭 및 속도를 단계적으로 할당할 수 있도록 하여 보다 정확하고 능동적인 네트워크 기반의 침입 대응 기술을 구현할 수 있도록 한다.
인공면역시스템을 이용한 침입탐지시스템 개발을 위해 적용한 동적클론선택(Dynamic Clonal Selection) 알고리즘과 그의 문제점을 소개하고 개선된 동적클론선택 알고리즘을 제안한다. 개선된 동적클론선택 알고리즘은 정상행위를 비정상행위로 판단하는 기억 탐지 자들을 제거함으로써 기존에 동적클론선택 알고리즘이 안고 있던 오류를 감소시키는 방안을 제시한다.
인터넷과 네트워킹 기술의 비약적인 발전으로 인해 수많은 프로토콜들과 관련 기술, 그리고 서비스들이 새롭게 등장하였다. 하지만 설계상에서 보안에 대해 고려되지 않았던 많은 기술들은 이제 새로운 보안 위협을 발생시키는 등의 문제점을 드러내고 있다. 네트워크를 통한 크래킹 역시 이러한 문제점으로 지적되고 있는데, 이러한 위협으로부터 시스템을 보호하기 위해 방화벽, 침입탐지 시스템과 같은 정보보호 시스템들이 연구, 개발되었다. 본 논문에서 제안하는 네트워크 모니터링 도구는 스니핑이라는 해킹 기법으로 이용되기도 하는 다소 위험한 기술을 이용하여 네트워크상의 패킷을 실시간으로 수집, 분석함으로써 네트워크 관련 오류의 점검, 크래킹의 실시간 감시등에 이용할 수 있도록 해준다.
최근 인터넷 사용의 증가에 따라 네트워크에 연결된 시스템에 대한 악의적인 해킹과 침입이 빈번하게 발생하고 있으며, 각종 시스템을 운영하는 정부기관, 관공서, 기업 등에서는 이러한 해킹 및 침입에 의해 치명적인 타격을 입을 수 있는 상황에 놓여 있다. 이에 따라 인가되지 않았거나 비정상적인 활동들을 탐지, 식별하여 적절하게 대응하는 침입탐지 시스템에 대한 관심과 수요가 높아지고 있으며, 침입탐지 시스템의 예측성능을 개선하려는 연구 또한 활발하게 이루어지고 있다. 본 연구 역시 침입탐지 시스템의 예측성능을 개선하기 위한 새로운 지능형 침입탐지모형을 제안한다. 본 연구의 제안모형은 비교적 높은 예측력을 나타내면서 동시에 일반화 능력이 우수한 것으로 알려진 Support Vector Machine(SVM)을 기반으로, 비대칭 오류비용을 고려한 분류기준값 최적화를 함께 반영하여 침입을 효과적으로 차단할 수 있도록 설계되었다. 제안모형의 우수성을 확인하기 위해, 기존 기법인 로지스틱 회귀분석, 의사결정나무, 인공신경망과의 결과를 비교하였으며 그 결과 제안하는 SVM 모형이 다른 기법에 비해 상대적으로 우수한 성과를 보임을 확인할 수 있었다.
본 연구는 최근 그 중요성이 한층 높아지고 있는 침입탐지시스템(IDS, Intrusion Detection System)의 침입탐지모형을 개선하기 위한 방안으로 유전자 알고리즘에 기반한 새로운 통합모형을 제시한다. 본 연구의 제안모형은 서로 상호보완적 관계에 있는 이분류 모형인 로지스틱 회귀분석(LOGIT, Logistic Regression), 의사결정나무(DT, Decision Tree), 인공신경망 (ANN, Artificial Neural Network), 그리고 SVM(Support Vector Machine)의 예측결과에 적절한 가중치를 부여해 최종 예측결과를 산출하도록 하였는데, 이 때 최적 가중치의 탐색을 위한 방법으로는 유전자 알고리즘을 사용한다. 아울러, 본 연구에서는 1차적으로 오탐지율을 최소화하는 최적의 모형을 산출한 뒤, 이어 비대칭 오류비용 개념을 반영해 오탐지로 인해 발생할 수 있는 전체 비용을 최소화할 수 있는 최적 임계치를 탐색, 최종적으로 가장 비용 효율적인 침입탐지모형을 도출하고자 하였다. 본 연구에서는 제안모형의 우수성을 확인하기 위해, 국내 한 공공기관의 보안센서로부터 수집된 로그 데이터를 바탕으로 실증 분석을 수행하였다. 그 결과, 본 연구에서 제안한 유전자 알고리즘 기반 통합모형이 인공신경망이나 SVM만으로 구성된 단일모형에 비해 학습용과 검증용 데이터셋 모두에서 더 우수한 탐지율을 보임을 확인할 수 있었다. 비대칭 오류비용을 고려한 전체 비용의 관점에서도 단일모형으로 된 비교모형에 비해 본 연구의 제안모형이 더 낮은 비용을 나타냄을 확인할 수 있었다. 이렇게 실증적으로 그 효과가 검증된 본 연구의 제안 모형은 앞으로 보다 지능화된 침입탐지시스템을 개발하는데 유용하게 활용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.