• Title/Summary/Keyword: 침식 저항력

Search Result 16, Processing Time 0.023 seconds

Analysis on Channel Morphology and Rock Resistance by Difference of Bedrock Types between Upper and Lower Reach (상.하류의 기반암 차이에 따른 하천의 형태와 암석의 저항력 분석)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.1 s.118
    • /
    • pp.27-40
    • /
    • 2007
  • The streams evolve to diverse forms influenced by various factors such as rock resistance tectonic process, sediments and discharge. This study focuses on erosion resistance of rocks among these factors. The morphology of plane and longitudinal profile has been analysed in upper and lower reach of 6 streams using GIS; Yeoryong-cheon, Heungjeong-cheon, Duhak-cheon, Daehwa-cheon, Namcheon-cheon, Guryong-cheon, having distinct bedrock types between upper and lower reach. While the basins of granite have gentle slope, low concavity and wide valley area, those of gneiss form steep slope, high concavity and narrow valley area. However, the basins of sedimentary rock make steep slope and high relief in main channel, the other features show some differences in each stream. Among the various morphological features, the indices on slope and concavity of main channel, drainage density, ratio of valley area, average slope and average relief of the basin which have clear differences between rocks in upper and lower reach are calculated to interpret the erosion resistance of rocks in upper and lower reach. As a result, the upper reaches composed of gneiss have the highest erosion resistance, sedimentary rocks in upper and lower reaches show moderate resistance, and granite reaches generally have the lowest resistance except the upper reaches bordered by sedimentary rock.

Analysis on Erosional Properties of Fine-Cohesive Sediments In Kunsan Coast (군산해역 미세-점착성 퇴적물의 침식특성 해석)

  • 이현승;조용준;황규남
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.222-226
    • /
    • 2003
  • 대부분의 경우에 하구의 미세-점착성 퇴적물은 보통 무기성 광물과 유기물 및 생화학물의 혼합체이며, 광물 입자들은 주로 점토와 실트로 구성되어 있다. 이러한 혼합체의 침식특성은 사질성 퇴적물과는 달리 입자간의 응집현상에 의한 의해 크게 영향을 받으며, 응집강도는 광물질 구성, 입경분포, 유기물 함량 등으로 묘사되는 퇴적물 자체의 물리ㆍ화학적 기본특성에 따라 크게 변화하고 (Mea, 1986), 특히 저면 퇴적물의 침식 여부는 흐름 전단응력에 의한 저면퇴적물의 저항력 즉, 저면전단강도의 상대적 크기의 차이에 좌우되므로, 그 침식 특성은 저면전단강도 흑은 저면밀도로 묘사되는 저면특성에 따라 크게 변화한다(황규남 등, 2003). 또한 각 해역마다 저면 퇴적물은 퇴적물 공급원, 수동학적 조건, 생태학적 조건 등이 모두 다른 상태에서 형성된 퇴적층이므로, 저면 퇴적물의 기본특성 및 저면특성은 "site- specific" 한 성격을 갖는다. (중략)

  • PDF

Estimation of Rock Erodibility due to Energy Dissipation of Inflow Passing through the Sluice Gate of Seadike (배수갑문 유입수류의 에너지 감쇠에 따른 암석 침식 가능성 추정)

  • Jo, Jin-Hun;Park, Yeong-Jin;Park, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.237-245
    • /
    • 2000
  • Sihwa seadike is originally designed to control the water level In lake Sihwa. However the sluice gate is being operated everyday to preserve the water quality of lake. Due to the frequent operation of gates the bottom of drainage canal which is composed of weathered rock and soft rock is being scoured. Recently the bottom in the front area of apron was protected by putting underwater concrete. This study is carried out to understand the hydraulic situation for protection, and to estimate the trend of scouring by comparing between energy dissipation and registance of bottom rock. Annandale(1995) introduced the erodibility index theory, and suggested a criteria to judge the erodibility of rock through the relation between the erodibility index and energy dissipation. Determenation of erodibility index of rock is based on the results of sample core analysis, and the energy dissipation of flow is calculated from the estimation of total head on the scale model. These two values are plotted on the criteria, and the erodibility of rock is determined.

  • PDF

Formation processes of low river terraces in Korea (우리나라 저위하안단구(低位河岸段丘)의 형성요인)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.2
    • /
    • pp.71-81
    • /
    • 2001
  • According to the change of stream power/resisting power relationship due to the crustal movement or the climatic change, most channel landforms which reflect the equilibrium state of fluvial system are eroded and a part of them is remained as a river terrace. In many rivers in Korea are extensively distributed the relatively younger low river terraces. But their accurate formation mechanism is not known. In this paper, the formation processes and the dating of low river terraces distributed in Nakdong River basin will be investigated. Stream power of the downward erosion was revived because the sea level fell down. So stream power was superior to the resisting power under the cool-wet climatic condition during the last glacial period. Thus the river bed was excavated deeply, so that low river terraces were built up. And many incised meander loops were cut during this period. But, when fluvial system did not have equilibrium over all reaches, the last glacial period ended and the sea level initiated to rise rapidly. The headward erosion from the fall of sea level during the last glacial period had kept up to Hagye Fall because of the cutting of incised meander loops. Deeply excavated valleys and abandoned channel of cut-meander in lower reaches of a stream were filled with sediments. Thus the longitudinal profile of the uppermost reaches reflect the last interglacial, the upper reaches the last glacial, and the middle/1ower reaches recent fluvial system. Therefore low river terraces have been formed since the last glacial period.

  • PDF

The Distribution Characteristics of Topographical Relieves at Each Geological Area in Gyeongsangbuk-do Province using GIS (GIS를 이용한 경상북도 지질 지역별 지형 기복의 분포 특성)

  • KIM, Dae-Sik;LEE, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.3
    • /
    • pp.49-57
    • /
    • 2010
  • The topographical rolling distribution characteristics of 10 geological areas in Gyeongsangbuk-do are analyzed using GIS. PEs, PEgrgn, Pp2, Kav·Kiv, and Khgr regions occupy the more than 60% that are a steep slope-a high elevation and a steep slope-a middle elevation region, and form high moutains in Gyeongsangbuk-do. Meanwhile, Ke1-9 and Te1-2 regions take possession of the more than 70% that are a low elevation region. Ke1-9 region form landward flatlands and hills around Nakdong river and tributaries of Nakdong river in Gyeongsangbuk-do. Then, Te1-2 region form coastal lowlands adjacent the East sea in Gyeongsangbuk-do. Also, Jgr region take possession of the more than 70% that are a middle elevation region, and form low moutains or flatlands in Gyeongsangbuk-do. Finally, Ols1 region take possession of the more than 50% that are a steep slope region, and form landward moutains in Gyeongsangbuk-do.

A Study on Soil Improvement Agent for Rainfall-Induced Erosion on the Soil Slope (흙 사면의 강우 침식보강을 위한 토양개량제 개발에 관한 연구)

  • Kang, Dae-Heung;Kim, Young-Suk;Hwang, In-Taek;Kim, Jae-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.237-246
    • /
    • 2021
  • With climate change, debris flow has been increasing due to the collapse and erosion of shallow slopes caused by extreme rainfall. It is preferred to an economical and eco-friendly method rather than reinforcement of soil slopes with the earth anchor or nailing method. In this study, a soil improvement agent was developed by utilizing insitu soil, leaf mold, and used harbal medicine to help sufficient vegetation. In addition, to prevent surface erosion, shear strength of the soil was increased by using micro cement and hemihydrate gypsum as additives. The optimum mix ratio of the mixture is determined by increasing the shear strength by checking the erosion progress of the ground surface layer due to rainfall through an laboratory test. The safety factor of soil slope has been improved on the slope surface reinforced by the improvement agent, and the strength of erosion has been increased, making it efficient to cope with heavy rain during wet season.

Characteristics and classification of landform relieves on mountains and valleys with bedrock types (기반암별 산지와 곡지의 지형 기복 특성과 유형)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.1-17
    • /
    • 2014
  • This study analyzed characteristics of landform relieves on 12 bedrock whole(W) areas and 24 mountain(M) and valley(V) areas. Based on this result, characteristics and relations between bedrocks and landform relief were classified as follows. 1) gneiss-height M and granite-height W, M, V areas show active stream incision for uplift. However these areas have relatively low relief and grade compared to high altitude, because effect of denudation don't pass on whole slope. 2) gneiss-height W, V, gneiss-mid M, schist M, granite-mid M, volcanic rock W, M, sedimentary rock-height(conglomerate) W, M, V, sedimentary rock-mid (sandstone and shale) M, limestone W, M areas have active stream erosion and mass movement, but landform relieves are on the high side, because these have resistant bedrock and geological structure against weathering and erosion. 3) gneiss-mid W, V, schist W, V, granite-mid W, V, volcanic rock V, sedimentary rock-mid W, V, sedimentary rock-low(shale) M, limestone V areas landform relieves are on the low side, because these have weak resistance and active weathering, mass movement, erosion, transportation and deposit. 4) gneiss-low W, M, V, granite-low W, M, V, sedimentary rock-low W, V areas landform relieves are very low, because these don't have active erosion and mass movement as costal area with low altitude.

A Laboratory Study on Erosional Properties of the Deposit Bed of Kaolinite Sediments (고령토 퇴적저면의 침식특성에 대한 실험적 연구)

  • Kim, Yong-Muk;Kim, Hyun-Min;Hwang, Kyu-Nam;Yang, Su-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1181-1190
    • /
    • 2014
  • In this study, the erosional parameters for deposit beds were quantitatively estimated domestically for the first time through the erosion tests using an annular flume. Four erosion tests were carried out for the deposit beds with different consolidation structures, which were obtained by consolidating the kaolinite slurries for a given time durations. Results of erosion tests showed that the bed shear strength ${\tau}_s$ increased with the consolidation time and bed depth. The erosion rate ${\epsilon}$ was also shown to be related well with the excess shear stress ${\tau}_b-{\tau}_s$ which was given by the difference between flow shear stress ${\tau}_b$ and bed shear strength ${\tau}_s$. While the logarithm of the erosion rate was linearly related with the excess shear stress as ${\tau}_b-{\tau}_s{\geq}0.1N/m^2$, however, the erosion rate decreased rapidly with it when ${\tau}_b-{\tau}_s{\leq}0.1N/m^2$. These erosion test results were also shown to be good enough to verify by comparing with the test results from previous studies and a new equation was suggested to describe the erosion rate more well in the region of ${\tau}_b-{\tau}_s{\leq}0.1N/m^2$.

Topographic Relief and Denudation Resistance by Geologic Type in the Southern Korean Peninsula (한반도 남부의 지질 유형별 지형 기복과 삭박 저항력)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This study tried to reveal relative surface denudation resistance and ranking by geologic types in the Southern Korean Peninsula using an 1:250,000 digital geologic map and ASTER GDEM. Among rock types such as igneous, sedimentary and metamorphic rocks, metamorphic rock showed the greatest resistance to surface denudation. The most resistant rock to surface denudation by geologic periods (e.g., the Precambrian, Paleozoic, Mesozoic and Cenozoic) was found from the Precambrian. Among the major tectonic settings in the Southern Korean Peninsula such as the Gyeonggi massif, Okcheon belt, Yeongnam massif, Gyeongsang basin and Pohang basin, the Okcheon belt indicated the greatest resistance. The most and least resistant rocks from the representative nine rocks in the Southern Korean Peninsula were Paleozoic limestone, and Cretaceous sedimentary rock and Cenozoic sedimentary rock, respectively. This study suggests that Paleozoic limestone, Cretaceous volcanic rock, Paleozoic sedimentary rock and Precambrian gneiss can be regarded as hard rocks with high elevation, steep slope and complicated relief, while soft rocks with low elevation, gentle slope and simple relief are Jurassic granite, Cretaceous sedimentary rock and Cenozoic sedimentary rock.

Experimental Study on Failure Characteristics of Riprap Revetments in Meandering Channel (만곡부 흐름특성을 고려한 사석호안공 붕괴 수리실험 연구)

  • Bae, Deok-Won;Kim, Hyung-Jun;Yoon, Kwang-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.696-696
    • /
    • 2012
  • 호안은 유수의 침입으로부터 제방 및 하안의 침식 피해를 방지하기 위해 제방에 설치되는 구조물이다. 침식에 의한 제방 및 호안의 대표적인 붕괴특성 중에는 만곡부, 하천 급경사, 지형의 간섭효과 등이 있다. 특히, 만곡부는 원심력, 2차류 등에 의한 수위상승 및 유속증가로 제체에 응력 집중이 발생되어 안정성 저하를 유발할 수 있다. 또한, 만곡부의 흐름 방향전환 현상은 하도내 통수능 저하를 발생시켜 홍수피해를 가중시킬 수 있다. 따라서 하천특성상 만곡부에 의해 발생할 수 있는 홍수피해 요소를 저감시킬 수 있도록 적합한 피해저감대책을 마련할 필요가 있다. 제방의 보강대책으로서 활용되고 있는 호안은 역학적인 측면에서 외력과 저항력의 크기에 따라 안정성이 평가되어야 하며 지역여건 등에 따른 만곡부의 수위상승 및 제방 침식 등을 고려한 설계가 수행되어야 한다. 국내 실무에서 적용되고 있는 호안설계방법은 하천설계기준 해설(2009)을 참고하고 있는데, 흐름현상 및 만곡부 특성 등에 대하여 경험과 이론의 양면을 고려한 설계를 수행하도록 제안하고 있다. 이는 호안 안정성에 대한 역학적 검토 방법의 한계로 비합리적 설계가 될 우려가 있다. 따라서 만곡부에 의한 유속 및 소류력 등 흐름특성을 고려한 정량적인 평가기법이 요구되는 상황이다. 본 연구에서는 수리실험을 통해 만곡에 의한 흐름영향과 수리학적 거동 및 설계요소를 파악하고자 만곡부에 사석호안공을 설치하여 흐름전환 및 유속변화에 따른 사석호안공의 이탈현상을 재현하였다. 실험수로는 곡률반경( )이 4.5 m인 만곡부가 3개소 발생하는 폭 2.3 m, 길이 25 m의 다중 사행수로 형태이다. 실험수로 우안의 1V:2H 경사면에 10, 20, 30, 40, 50 mm 사석을 크기별로 설치하여 만곡에 의한 유속변화 등 흐름현상과 호안공 이탈을 관찰하였다. 수리실험은 고정상으로 수행되었으며 정상류 흐름조건에서 공급유량별 하류단 수위 조절을 통해 만곡부내 호안 공 이탈을 발생시키는 설계인자를 도출하고자 유속과 수심을 측정하였다. 실험결과를 바탕으로 사석호안공 설계시 1차원 접근유속에 만곡 영향을 고려하여 대표유속으로 적용하는 방법의 특성을 파악하고, 사석호안공의 이탈유속과 만곡에 의한 흐름특성간의 상관관계를 분석하여 제원결정기법을 제안하였다.

  • PDF