• Title/Summary/Keyword: 침상

Search Result 455, Processing Time 0.039 seconds

Atomic Force Microscopy(AFM) based Single Cell Manipulation and High Efficient Gene Delivery Technology (원자간력 현미경을 이용한 단일세포 조작 및 고효율 유전자 도입기술)

  • Han, Sung-Woong;Nakamura, Chikashi;Miyake, Jun;Kim, Woo-Sik;Kim, Jong-Min;Chang, Sang-Mok
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.538-545
    • /
    • 2009
  • The principle and application of a scanning probe microscopy(SPM) are reviewed briefly, and a low-invasive single cell manipulation and a gene delivery technique using an etched atomic force microscopy(AFM) probe tip, which we call a nanoneedle, are explained in detail. The nanoneedle insertion into a cell can be judged by a sudden drop of force in a force-distance curve. The probabilities of nanoneedle insertion into cells were 80~90%, which were higher than those of typical microinjection capillaries. When the diameter of the nanoneedle was smaller than 400 nm, the nanoneedle insertion into a cell over 1 hour had almost no influence on the cell viability. A highly efficient gene delivery and a high ratio of expressed gene per delivered DNA compared the conventional major nonviral gene delivery methods could be achieved using the gene modified nanoneedle.

Microstructure Control of Reaction-Sintered Porous Mullite (반응소결된 다공성 뮬라이트의 미세구조 제어)

  • 조범래;윤상렬;강종봉
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.31-36
    • /
    • 2000
  • The effect of several important processing variables was investigated on formation of porous mullite with acicular microstructure. Experimental results demonstrated that microstructure and porosity of porous mullite are depending on concentration of $AlF_3$, holding time at $900^{\circ}C$ and starting material. Acicular mullite was developed by increasing amount of $AlF_3$ and holding time at $900^{\circ}C$. Mullite began to be formed at $1200^{\circ}C$ and the resultant microstructure sintered at this temperature is similar to those at higher temperatures. Porosity increases with increase in amounts of $AlF_3$ and holding time at $900^{\circ}C$ . Therefore, it is found that microstructure of reaction-sintered porous mullite can be controlled by governing the amount of $AlF_3$ and holding time at $900^{\circ}C$.

  • PDF

Preparation of Needle-like $\alpha$-Iron Oxide Using a Crystal Growth Controller. (결정 성장 조절제를 이용한 침상형 $\alpha$산화철의 제조)

  • Byeon, Tae-Bong;Son, Jin-Geun
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.768-778
    • /
    • 1996
  • Iron oxide (hematite, $\alpha$-${Fe}_{2}{O}_{3}$) particles were prepared directly from aqueous solution using a crystal growth controller. Paticles properties and reaction mechanisum of products as a function of basicity, formation process and mechanism of needle-lkie hematite were investigated. hexagonal hermatite particles were formed in teh range below pH 9.0, ellipsoidal or rectangular hematite particles in the range of pH 10.75-11.75 respectively. In the range above pH 12.50, acicular $\alpha$-FeOOH was formed. Basicity of product solution produced in the range of pH 10.7511.75 was increased slightly as compared with basicity of reastants due to hydroxly ion(OH-) formed by dissociation crystal growth controller. Citric acid which is acted as a crystal growth controller was adsorbed in the form of itrate anion(R-COO-) on the ferric hydroxide and exerted important role on the formation to the needle-like $\alpha$-${Fe}_{2}{O}_{3}$ particles in this reaction system.

  • PDF

Occurrence and Mineralogical Characteristics of Asbestos in Dolostone at Ungdo, Seosan (서산 웅도 백운암 내 석면 산출 및 광물학적 특성 규명)

  • Kim, Seon-Ok;Lee, Minhee;Jung, Hyunjung;Shin, Wonji
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.489-496
    • /
    • 2014
  • The occurrence and mineralogical characteristics of asbestos in dolostone at Ungdo, Seosan were investigated by analyses of PLM, XRD, and SEM/EDS. Representative outcrops of dolostone at Ungdo were examined and four dolostone samples were collected according the occurrence type to identify the shape of asbestos in dolostone samples. The host rock of dolostone had been produced from the hydrothermal alteration and/or thermal metamorphism of which main source was assumed as the acidic granite. Tremolites were observed near the cracks or fractures of the dolostone as tamping or gob types. From the mineralogical analyses, main minerals of dolostone were dolomite with calcite, quartz, talc, amphibole, and pyroxene. From SEM/EDS analyses, tremolite-actinolite asbestoses were observed in dolostone and their shapes were prismatic and fibrous (less than $1{\mu}m$ in width). Non-asbestos prismatic forms were also found and they would transfer to asbestos particles resulting from the cleavage and fracture of the prismatic particles. Overall results suggest that asbestoses in Ungdo dolosotnes were mainly tremolite-actinolite and they were originated from the hydrothermal alteration of Ca-Mg rich dolostone.

Electrochemical Properties of Needle Coke through a Simple Carbon Coating Process for Lithium Ion Battery (침상 코크스의 피치 코팅에 따른 리튬 이차전지 탄소계 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.514-519
    • /
    • 2020
  • Graphite materials for lithium ion battery anode materials are the most commercially available due to their structural stability and low price. Recently, research efforts have been conducted on carbon coatings by improving side reactions at the edge site of carbon materials. The carbon coating process has classified into a CVD by chemical reaction, wet coating process with solvent and dry coating by mechanical impact. In this paper, the rapid crush/coating process was used to solve the problem of which only few parts of the carbon precursor (pitch) can be used and also environmental problems caused by solvent removal in the wet coating process. When the ratio of needle coke to pitch was 8 : 2 wt%, and the rapid crush/coating process was carried out, it was confirmed that the fracture surface was coated by pitch. The pitch-coated sample was treated at 2400 ℃ and 41.8% improvement in 10C/0.1C rate characteristic was observed. It is considered that the material simply manufactured through the simple crush/coating process can be used as an anode electrode material for a lithium ion battery.