• Title/Summary/Keyword: 침로유지

Search Result 20, Processing Time 0.021 seconds

Real-Time Closed-Loop Degaussing Technique for a Minesweeper (소해함을 위한 실시간 폐회로 소자 기법)

  • Kang, Byungsu;Kim, Dong-Hun;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Dong-Wook
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.3
    • /
    • pp.98-103
    • /
    • 2017
  • In this paper, an efficient closed-loop degaussing technique is proposed to control real-time degaussing currents required for a minesweeper. To achieve this, new principle and algorithm for controling degaussing currents are presented, and they are compared to conventional ones. To validate the proposed method, a minesweeper mockup is tested by means of a rigorous numerical simulation. Results show that the method successfully yields satisfactory degaussing performances for several course angle changes of the mockup.

A Study on the Collision-Avoidance Action of Bottom Trawler under Operation (조업중인 저층 트롤선의 충돌회피 동작에 관한 연구)

  • KIM, Min-Seok;KIM, Jin-Gun;KIM, Jong-Hwa;JEONG, Sun-Beom
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.15 no.1
    • /
    • pp.47-56
    • /
    • 2003
  • Recently with the conclusion of fisheries agreements between Korea and Japan, and between Korea and China, trawlers in korea must operate in smaller fishing ground than before. As a result of this, the possibilities of collisionin increases gradually between trawlers under operation in this area. Authors performed a series of experiments on board to give the information of collision avoiding action to navigators of trawlers. The obtained results are summerized as follows : 1. The greater the rudder angle, the smaller the value of T, but there is no big diffierence in K due to rudder angle. 2. The greatest distance is to be kept by the give way vessel to avoid collision when the crossing course angle is $70^{\circ}{\sim}90^{\circ}$. In this case the safety minimum approaching distance must be more than 5 times of her own length. 3. Risk of collision in crossing is more greater in obtuse situation than in acute one. 4. The navigator of the give way vessel must take an action to avoid collisions outside of the minimum safety approaching distance.

A Study for Improving Naval Vessels's Position Calculation and Reporting Requirements for Safe Sailing in Narrow Channels (해군함정 협수로 연안 항해시 함위산출 및 보고사항 개선에 관한 연구)

  • Ko, Jae-Woo;Lim, Bong-Taek
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.451-456
    • /
    • 2015
  • This research examines the use of Cross Bearing in the Republic of Korea Navy. Specifically, this study focuses on the degrees of errors caused by the order of measuring targets and suggests a new method to determine Advice Course. It then reviews the appropriateness of the contents of Location Report that is regularly to the duty officer during a voyage in a narrow channel. Whenever a naval vessel passes through a narrow channel, many number of sailors are assigned to diverse positions in order to enhance navigational safety. Even though it is possible to easily recognize the location of a ship with helps of various kinds of navigational equipments using state-of-the-art technology, there are still several situations where sailors' efforts are indispensible for calculating the position of their ship : when the ship is damaged during an engagement with enemies and when the enemies interfere (GPS) signals. In addition, the particularity of naval vessels in which many number of crew members can be assigned to various positions supports for the suitability of the use of Cross Bearing in the Navy. This study will contribute to navigational safety of the ROK Navy and fostering junior naval officers' seamanship.

A Study on the Ship`s Collision Avoiding Action Analyzed from a Viewpoint of Ship Kinematics (선체운동학적으로 본 충돌회피동작에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.97-112
    • /
    • 1978
  • The rule 15, 16 and 17 of International Regulations for Preventing collisions at Sea direct actions to avoid collision when two power-driven vessels are crossing. But these rules do not present the safety minimum approaching distances outside which a give- way vessel deeps out of the way of a stand-on vessel. In this paper, the author analyzed the ship's collision avoiding actions from a viewpoint of ship kinematics as the method to calculate this distance. The author worked out mathematic formulas for calculating the safety minimum approaching distances outside which the give-way vessel takes the actions to avoid collisions in accordance with the cross angles of the crossing vessels' courses. Figuring out actually the values of maneuvering indices of the M. S. Koan Ack San (GT: 224tons), the training ship of the National Fisheries University of Busan and the M. S. Golden Clover (GT: 101, 235tons) of the Eastern Shipping Co., Ltd. through their Z test, the author applied these values to the calculating formulas and calculated the safety minimum approaching distances. The results of calculations are as follows; 1. The greatest distance is to be kept by the give-way vessel to avoid collision when the cross angle of courses is 90$^{\circ}$ or near it. In such case the safety minimum approaching distance of a small vessel must be more than 5 times of her own length and that of a large vessel more than 11 times of her own length. 2. Collision danger is greater when crossing angle is obtuse than in an acute angle, therefore greater distance is to be kept by the give-way vessel to avoid collision in the case of the obtuse angle. 3. The actions to be taken to avoid collisions by the give-way vessel in Rule 16 and by the stand-on vessel in Rule 17(a)(ii) of International Regulations for Preventing Collisions at Sea, must be done outside the above safety minimum approaching distance. When inevitably such actions are to be taken within the safety minimum approaching distance, they should be accompanied with engine motions.

  • PDF

A Study on Development of Ship Collision Avoidance Support Program (선박충돌회피지원프로그램 개발에 관한 연구)

  • Yang Hyoung-Seon;Jeong Dae-Deuk
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.15-20
    • /
    • 2005
  • Recently, ship collision accidents account for $20\%\∼30\%$ of domestic marine accidents, also have increased continually. In this paper, therefore we propose the development of Ship Collision Avoidance Support program for decreasing ship collision accidents. This program has been developed on the basis of CCAS-Model. A CCAS-Model has ship's maneuvering performance and has studied for the propose of supporting to avoid ship collision in close quarters. Besides, the program will effectively support maneuvering for collision avoidance through displaying the feasible area and the method of collision avoidance using own ship's turning characteristic about action of target ship's keeping course and velocity in various encounter.

  • PDF

Analysis of Bridge Team's Technical Behavior Pattern Appearing in Williamson's Turn (윌리암슨 선회법에 나타난 선교팀의 기술적 행동유형의 분석)

  • Yun, Chong-gum;Park, Deuk-Jin;Yim, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.701-708
    • /
    • 2018
  • Human error is an important cause of maritime accidents and the identification of human error is fundamental to maritime-accident preventions. In particular, the pattern of technical behavior taken in the circumstance of bridge teams(navigator & helmsman) provides important information to identify human error. The purpose of this study is to identify and analyze technical behavior pattern of bridge teams using Williamson's turn for rescue of persons overboard. The focus of this study is to build and analyze a cognitive model of the human behavior factors of the bridge teams in the process of implementing the experiments. The experimental environment was constructed using a ship-handling simulator and conducted an experiment on participants from 24 bridge teams. As a result of the experiment, it was able to identify the behavior pattern of the ship's maneuvering and maintain trajectory using the rudder and engine. This study is expected to correct human error in the bridge teams application to the certification and training of seafarers.

A Study on Development of Ship Collision Avoidance Support Program (선박충돌회피지원프로그램 개발에 관한 연구)

  • Yang Hyoung-Seon;Jeong Dae-Deuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.47-52
    • /
    • 2006
  • Recently, ship collision accidents account for $20%{\sim}34%$ of domestic marine accidents, also have increased continually. In this paper, therefore we propose the development of Ship Collision A voidance Support program for decreasing ship collision accidents. This program has been developed on the basis of CCAS-Model. A CCAS-Model has ship's maneuvering performance and has been studied for the propose of supporting to avoid ship collision in close quarters. Besides. the program will effectively support maneuvering for collision avoidance through display of the feasible area and the method of collision avoidance using own ship's turning characteristic about action of target ship's keeping course and velocity in various encounter.

  • PDF

Principal Component Analysis on Marine Casualties Occurred at Korean Littoral Sea in Recent 5 Years (최근 5년간 국내 연근해에서 발생한 해양사고에 대한 주성분분석)

  • KIM, Yeong-Sik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.2
    • /
    • pp.465-472
    • /
    • 2016
  • Principal Component Analysis (PCA) is useful statistical technique for finding patterns in data, and expressing the data in such a way as to highlight their similarities and differences. In this paper, 1417 marine casualties occurred in Korean littoral sea in recent 5 years, were examined by the PCA. The main results obtained were as follows : 1. Most of marine casualties resulted from the human factors such as careless operation and insufficient engine maintenance. 2. Collision and standing mainly resulted from steering room-related human factors such as careless guard, inadequate ship-handling, however engine damage and fire explosion mainly resulted from engine room-related human factor such as bad handling of engine system. 3. No. 1 principal component represents accident frequency, No. 2 principal component represents the cause and No. 3 principal component represents the pattern of marine casualties, respectively.

A Study on the improvement of ATH surveillance radar to solve the instability of the target velocity (훈련함 탐색레이더 표적 속도 불안정 현상 개선에 관한 연구)

  • Lee, Ji-Hyeog;Shim, Min-Seop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.334-341
    • /
    • 2020
  • The optimum solutions of the instability of the target velocity were studied to solve the case of the target velocity of the ship approaching at a speed of ◯◯knots and deviated by more than ± 10knots, while the surveillance radar rotating speed was varied, while the maximum search range of the radar was evaluated during the operational test & evaluation. The instability of the target velocity did not enable the radar to calculate the information of the target precisely and to degrade the probability of hit and the quality of the target management. The improvement to handle the deviation of the target velocity was optimally determined by using a fishbone diagram to find 9 reasons based on 4M1E, and the algorithm of the target management was identified as the crucial reason. In this study, the improvement was applied to the filter algorithm to stabilize the target velocity in the target tracking management SW by reviewing the current algorithm to find the velocity of the target and recognizing that the problem does not apply to different 𝜶, 𝞫 values when the antenna changed the rotating speed. The ability of the improvement to work was tested on board.

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.