• 제목/요약/키워드: 침강성탄산칼슘

검색결과 7건 처리시간 0.016초

난각칼슘에 관한 연구 (II) - 난각칼슘의 흡수율에 관한 연구 - (Studies of Egg-Shell Calcium (II) -A Study on Absorption Rate of Egg-Shell Calcium in Rat-)

  • 이숙경;김연태
    • 한국식품위생안전성학회지
    • /
    • 제18권2호
    • /
    • pp.73-78
    • /
    • 2003
  • 난각칼슘을 식초에 침지하여 제조한 양조칼슘, 현미칼슘과 난각칼슘분 및 침강성탄산칼슘을 흰쥐에 식이 후 칼슘의 혈청 중 보유량(흡수율)에 관하여 비교시험 결과는 다음과 같다. 1. 이온화율이 높은 양조칼슘(밀폐,통기)과 현미칼슘의 흡수는 경구투여 2시간 후에 최고치에 이른 것으로 나타났으며 이온화율이 낮은 난각칼슘분이나 침강성탄산칼슘은 이보다 늦은 5시간 후에 최고치에 이른 것으로 나타났다. 이는 이온화율이 높은 칼슘일 수록 흡수가 빠르게 진행되는 것으로 사료된다. 2. 흰쥐에 식이한 칼슘시료의 칼슘의 혈청 중 보유량은 현미칼슘>양조칼슘(밀폐)>양조칼슘(통기)>침강성탄산칼슘>난각칼슘분 순으로 낮게 나타났다. 이는 이온화율의 순과 같았다. 3. 현미칼슘의 혈청중 칼슘농도가 난각칼슘분에 비하여 약 4배 높은 것으로 나타난 것으로 보아 칼슘의 혈청 중 보유량은 칼슘 섭취수준에 의한 영향보다 칼슘 이온화율과 밀접한 관련이 있는 것으로 사료된다. 4. 제조 조건에 따른 양조칼슘의 혈청 중 보유량은 밀폐조건이 통기조건에 비해 약 1.4배 높은 것으로 나타난 이유를 규명하기 위해서는 연구가 계속 진행되야 할 것으로 본다.

풍촌지역 석회석을 이용한 침강성탄산칼슘의 제조 (Manufacture of Precipitated Calcium Carbonate from Pungchon Limestone)

  • 이재장;박종력
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.251-256
    • /
    • 2001
  • This research is focused on an improvement of additional value of high grade limestone. To obtain the basic data of precipitated calcium carbonate(PCC), studies of physical properties of limestone, calcination and hydration characteristics, the characteristics to manufacture quick lime, hydrated lime, ground calcium carbonate and precipitated calcium carbonate were performed. In the carbonation process, formation of rombohedral must be kept under $10^{\circ}C$ for reaction. Although the temperature of reaction of lime milk was limited under $30^{\circ}C$ for a colloidal PCC manufacture, over $50^{\circ}C$ for spindle type PCC. The recommended reaction conditions for colloidal PCC are $20^{\circ}C$ of reaction temperature, 4% of $Ca(OH)_2$ concentration, 1000rpm of stirring rate and 200ml/min of $CO_2$ gas flow rate.

  • PDF

침강성탄산칼슘의 제조에 관한 연구(I) : 비정질탄산칼슘의 생성과 전이 (Studies on the Preparation of Precipitated Calcium Carbonate(I) : Formation and Transformation of Amorphous Calcium Carbonate)

  • 하호;박승수;이희철
    • 공업화학
    • /
    • 제3권3호
    • /
    • pp.522-526
    • /
    • 1992
  • 반응온도 $10^{\circ}C$하에서 수산화칼슘 수용액에 $CO_2$ 가스를 흡수시켜 탄산화반응을 행하였으며 비정질탄산칼슘의 생성과 전이과정을 조사하였다. 생성된 비정질탄산칼슘은 입경 약 $0.02{\sim}0.05{\mu}m$ 정도인 구형의 초미립자로서 소량의 부착수를 포함고, $HCO^-_3$ 이온이 일부 치환된 비화학양론적인 물질이었다. 이 물질은 매우 불안정하여 반응액 내에서 쉽게 안정한 calcite로 전이하게 되는데 반응액 내의 탄산기가 $CO_3^{2-}$ 이온 지배적인 경우에는 연쇄상 calcite로 전이하였고, $HCO^-_3$ 이온 지배적인 경우에는 능면체 calcite로 전이하였다. 그러므로 비정질탄산칼슘의 전이과정을 적절히 제어함으로써 탄산칼슘 입자의 형태와 크기를 조절하는 것이 가능할 것으로 생각된다.

  • PDF

In-Situ 공정(工程)을 이용한 재활용(再活用) 펄프의 물성특성(物性特性) 향상 연구(硏究) (Development of Recycled Paper Properties using In-Situ Process)

  • 이종규;유광석;남성영;안지환
    • 자원리싸이클링
    • /
    • 제19권3호
    • /
    • pp.62-70
    • /
    • 2010
  • 종이에 대한 수요가 꾸준히 증가함에 따라 백상지 고지(White ledger)나 신문지 고지(Old newspaper pulp)등의 재활용지에 대한 중요성이 지속적으로 증가하고 있다. 또한 재활용지의 사용은 산림자원의 보호와 지구온난화 등의 환경문제 차원에서 더욱 부각되고 있다. 하지만 재활용지의 경우 종이에 필수적인 광학적 성질이 저하하고 기계적 성질이 감소하는 등 일반 종이에 비해 단점을 가지고 있다. 이러한 재활용지의 문제점을 보완하기 위해 입자 크기에 따라 $0.1{\mu}m{\sim}0.9{\mu}m$의 교질형 초미립자와 $0.1{\mu}m{\sim}0.9{\mu}m$의 입방형 미립자로 나눠지는 침강성 탄산칼슘을 In-situ 공정으로 재생펄프 표면에 합성하였다. 서로 다른 결정 형태와 크기가 다른 침강성탄산칼슘이 재활용지의 광학적 기계적 물성에 어떠한 영향을 주는지 연구하였다. 또한 화학펄프와의 혼합을 통해 침강성 탄산칼슘이 코팅된 재생펄프의 기계적 물성을 감소시키는 점을 보완하여 다른 첨가물에 전혀 의존하지 않고도 우수 재활용 인증마크인 GR규격을 만족하는지 알아보았다.

$CaCl_2-Na_2CO_3-H_2O$ 반응계에서 침강성탄산칼슘의 성상에 영향을 주는 인자에 관하여 (Factors Affecting the Property of $CaCO_3$Precipitated from $CaCl_2-Na_2CO_3-H_2O$ System)

  • Song, Young-Jun;Park, Charn-Hoon;Cho, Dong-Sung
    • 자원리싸이클링
    • /
    • 제5권4호
    • /
    • pp.32-41
    • /
    • 1996
  • 본 연구는 $CaCl_2$ $-Na_2$ $CO_3$ $-H_2$O 반응계의 생성물인 침강성탄산칼슘의 성상에 영향을 주는 인자들을 조사할 목적으로 수행되었으며, 탄산칼슘 동질이상의 생성수율, 입도, 백색도 등에 미치는 반응 용액 농도의 영향, 불순물의 영향, pH의 영향, 종결정의 영향, 반응용액 적하속도의 영향등을 검토하였다. 본 연구를 통하여 얻어진 주요 실험결과들은 아래와 같다. 1. 반응염의 농도가 크거나 그 적하속도가 빠를수록 반응생성물중 불안정한 aragonite과 vaterite의 생성수율이 증가하며 생성물의 입도는 미세해지는 경향을 보였다. 본 연구의 실험조건에서는 반응농도가 0.1~1.0mol/ι일 때 aragonite와 vaterite의 생성수율이 각각 80~90%, 75~82%로 가장 높았다. 2. 국내에서 산출되는 석회석 중에 주로 존재하는 6종의 불순성분($Fe_2$$O_3$, $Al_2$$O_3$, MgO, $SiO_2$, $Na_2$O, $K_2$O)을 구성하는 양이온을 반응용액속에 이온상태($SiO_2$는 500mesh 이하의 고체상태)로 첨가할 경우 Fe\ulcorner의 첨가량이 많을수록 생성물의 백색도가 저하하고 ${Fe^{3+}}/{CaCO_3}$몰분율이 0%일 경우 백색도 99.8에서 ${Fe^{3+}}/{CaCO_3}$몰분율이 10%일 경우 백색도 29.8), Mg\ulcorner의 첨가량이 많을수록 aragonite의 생성수율을 증가시키는 경향을 나타내었다. 3. pH 8~11 영역에서는 aragonite과 vaterite의 생성수율이 높고 pH 6~8과 11~13 영역에서는 calcite의 생성수율이 높았으나 pH 6~8에서 생성되는 calcite는 크기가 $1mu extrm{m}$이상인 조립의 능면체였으며 pH 11~13에서 생성되는 calcite는 미립의 능면체였다. 4. 종결정으로 calcite, aragonite, vaterite을 각각 생성 $CaCO_3$에 대한 중량백분율로 0~10% 첨가할 경우 calcite과 aragonite 종결정은 자신의 결정구조와 같은 $CaCO_3$동질이상의 생성수율을 증가시키나, vaterite은 불안정하여 종결정으로서의 역할을 하지 못하였다. 본 연구의 실험 조건중 $47^{\circ}C$에서 calcite Seed를 첨가하지 않을 경우 calcite의 생성수율은 50% 정도이나 calcite Seed를 6%이상 첨가하면 calcite의 생성수율이 거의 100%에 가깝게 증가하며, 동일조건에서 aragonite Seed를 첨가할 경우는 무첨가시 약 50%였던 aragonite의 생성수율이 2%이상 첨가하면 85%이상으로 증가하였다.

  • PDF

제철 슬래그를 이용한 광물 탄산화 기술의 개발 현황과 연구 방향 (Development Status and Research Direction in the Mineral Carbonation Technology Using Steel Slag)

  • 손민아;김국희;한건우;이민우;임준택
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.141-155
    • /
    • 2017
  • 이논문에서는 $CO_2$ 활용기술관점에서광물탄산화기술의하나인제철슬래그를이용한침강성탄산칼슘(Precipitated Calcium Carbonate, PCC) 제조 기술의 개발 현황을 고찰하였다. 광물 탄산화 기술의 원리, 특징, 전세계적 개발 현향을 살펴보았고, PCC 제조기술 및 시장동향도 파악하였다. 광물 탄산화는 안정적이고 친환경적인 기술로, 산업 부산물의 경제적 처리를 가능하게 한다. 일반적으로 슬래그중 Ca 용출 및 고액 분리 과정후 상등액과 $CO_2$의 반응을 통해 탄산칼슘을 제조한다. 이 기술은 파일럿 단계까지 기술개발이 진행되었으며(알토대학교의 Slag2PCC), 상용화를 위해서는 경제성 증대가 필요할 것으로 판단된다. 개발을 위한 핵심 기술로는 슬래그로부터 Ca의 효과적 용출 및 불순물 제거, 탄산칼슘의 입도 및 입형 제어를 통한 고부가가치화, 잔사 슬래그의 활용방안 발굴, 연속공정 구현을 위한 반응 조건최적화 등을 들 수 있다.

반응온도가 침강성탄산칼슘의 입도 및 형상에 미치는 영향 (Effect of reaction temperature on the particle size and crystal shape of precipitated calcium carbonate)

  • 송영준;박찬훈;조동성
    • 자원리싸이클링
    • /
    • 제4권1호
    • /
    • pp.38-45
    • /
    • 1995
  • 본 연구는 2.$0^{\circ}C$~85.3$^{\circ}C$, 2$\times$10\ulcornerM의 상압에서 탄산칼슘의 동질이상인 calcite, aragonite, vaterite의 생성과 그 형상에 미치는 온도의 영향을 조사한 것이다. 실험된 반응은 \circled1 Ca($HCO_3$)$_2$-Air bubble, \circled2 (OH)$Ca_2$ $-CO_2$, \circled3 (OH)$Ca_2$ $-H _2$$CO_3$, \circled4 $Ca(OH)_2$$-Na_2$CO$_3$, \circled5 $Ca(OH)_2$ $-K_2$ $ CO_3$, \circled6 $Ca(OH)_2$-($NH_4$)$_2$$CO_3$, \circled7 $CaCl_2$ $-Na2$ $CO_3$, \circled8 $CaCl_2$-K$_2$$CO_3$, \circled9 $CaCl_2$-($NH_4$)$_2$$CO_3$, \circled10 Ca($NO_3$)$_2$- $Na_2$$CO_3$, ⑪ Ca($NO_3$)$_2$- $K_2$$CO_3$, ⑫ Ca($NO_3$)$_2$등 12가지이며, 얻어진 실험결과는 아래와 같다. calcite는 반응종류에 상관없이 실험된 거의 모든 온도범위($2.0^{\circ}C$~$80.0^{\circ}C$)에서 생성하며 그 생성수율은 3$0^{\circ}C$정도일 때가 가장 높았다. aragonite는 반응에 따라 약간씩 차이는 있지만 주로 41.$0^{\circ}C$~53.$0^{\circ}C$ 사이에서 생성하기 시작하며 온도는 높을수록 그 수율은 높아진다. pH 또한 aragonite의 생성수율에 영향을 미치며 반응후 모액의 pH가 10.0~11.0 사이일 경우 생성수율이 최대가 되며 12.3 이상인 경우는 aragonite가 거의 생성되지 않았다. vaterite는 4$0^{\circ}C$ 이하에서만 생성하며 상당히 불안정하기 때문에 생성후 모액속에 방치할 경우 Cl ̄를 포함하지않는 반응계에서는 10~60분 경과후 완전히 calcite로 전이하고 Cl ̄를 포함하는 계에서는 약 140시간만에 완전히 calcite로 전이한다.

  • PDF