• Title/Summary/Keyword: 친환경 화학

Search Result 383, Processing Time 0.025 seconds

A study on the analysis of bearing reaction forces and hull deflections affecting shaft alignment using strain gauges for a 50,000 DWT oil/chemical tanker (스트레인 게이지를 이용한 5만 DWT급 석유화학제품운반선의 베어링 반력 및 선체변형량 분석에 관한 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.288-294
    • /
    • 2016
  • In modern ships, the shafting system often becomes stiff owing to the high engine power, whereas the hull structure becomes more flexible owing to optimization using high-tensile-strength thick steel plates; therefore, more sophisticated shaft alignments are required. In this study, strain gauge-based measurement was conducted under five vessel operating conditions and bearing reaction forces and hull deflections affecting shaft alignment were analyzed for a 50,000 dead weight tonnage oil/chemical tanker that has gained repute as an eco-friendly vessel in recent years. Furthermore, the analytical results from each technique-theoretical calculation, jacking ups, and strain gauges-were cross-checked against each other in order to enhance the degree of accuracy and reliability of the calculation.

Problems and Solutions of Anion Exchange Membranes for Anion Exchange Membrane Fuel Cell (AEMFC) (음이온교환막연료전지용 음이온교환막의 문제점과 해결방안)

  • Son, Tae Yang;Kim, Tae Hyun;Kim, Hyoung Juhn;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.489-496
    • /
    • 2018
  • Fuel cells are seen as eco-friendly energy resources that convert chemical energy into electrical energy. However, proton exchange membrane fuel cells (PEMFCs) have problems such as the use of expensive platinum catalysts for the reduction of conductivity under high temperature humidification conditions. Thus, an anion exchange membrane fuel cell (AEMFC) is attracting a great attention. Anion exchange fuel cells use non - Pt catalysts and have the advantage of better efficiency because of the lower activation energy of the oxygen reduction reaction. However, there are various problems to be solved including problems such as the electrode damage and reduction of ion conductivity by being exposed to the carbon dioxide. Therefore, this mini review proposes various solutions for different problems of anion exchange fuel cells through a wide range of research papers.

Low-costBacksheet Materials with Excellent Resistance to Chemical Degradation for Photovoltaic Modules (태양전지모듈용 고내구성 저가형 백시트)

  • Pyo, Se Youn;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.287-294
    • /
    • 2015
  • Photovoltaic (PV) modules are environmentally friendly energy-conversion devices to generate electricity via the photovoltaic effect of semiconductors on solar energy. One of key elements in PV modules is "Backsheet," a multi-layered film to protect the devices from a variety of chemicals including water vapor. A representative Backsheet is composed of polyvinyl fluoride (PVF) and poly(ethylene terephthalate) (PET). PVF is relatively expensive, while showing excellent resistance to chemical attacks. Thus, it is necessary to develop alternatives which can lower its high production cost and guarantee lifetime applicable to practical PV modules at the same time. In this study, PET films with certain levels of crystallinity were utilized instead of PVF. Since it is well known that PET is suffering from trans-esterification and hydrolysis under a wide pH range, it is needed to understand decomposition behavior of the PET films under PV operation conditions. To evaluate their chemical decomposition behavior within a short period of times, accelerated decomposition test protocol is developed. Moreover, electrochemical long-term performances of the PV module employing the PET-based Backsheet are investigated to prove the efficacy of the proposed concept.

Recent advances in Studies of the Activity of Non-precious Metal Catalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지용 산소환원반응을 위한 비백금촉매의 활성에 대한 최신 연구 동향)

  • Yoon, Ho-Seok;Jung, Won Suk;Choe, Myeong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.90-96
    • /
    • 2020
  • Polymer electrolyte membrane fuel cells, which convert the chemical reaction energy of hydrogen into electric power directly, are a type of eco-friendly power for future vehicles. Due to the sluggish oxygen reduction reaction and costly Pt catalyst in the cathode, the research related to the replacement of Pt-based catalysts has been vitally carried out. In this case, however, the performance is significantly different from each other and a variety of factors have existed. In this review paper, we rearrange and summarize relevant papers published within 5 years approximately. The selection of precursors, synthesis method, and co-catalyst are represented as a core factor, while the necessity of research for the further enhancement of activity may be raised. It can be anticipated to contribute to the replacement of precious metal catalysts in the various fields of study. The final objective of the future research is depicted in detail.

Current Status and Future Directions of Pheromone Research on Orchard Pests in Korea (과수해충 페로몬 연구의 현황과 향후 방향)

  • Yang, Chang Yeol
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.51-62
    • /
    • 2022
  • Numerous insect pests threaten the Korean orchard industry through feeding on various tissues of fruit trees. Generally, the control of economically important orchard pests is based on the use of chemical insecticides. Owing to growing concerns regarding the environmental and human health effects of insecticides, environment-friendly pest control strategies are urgently needed. Pheromones of orchard pests could lead to an environmentally safe control system based on mating disruption or mass trapping. This review summarizes the functions and compounds of known pheromones from 51 orchard pests in Korea. The pheromones identified to date from 14 species in the families Miridae, Aphididae, Diaspididae, Pseudococcidae, Rutelidae, Cecidomyiidae, and Eurytomidae and 26 species in the order Lepidoptera are female-produced sex pheromones that attract only males. In contrast, all known examples for 11 species in the families Alydidae, Pentatomidae, Thripidae and Cerambycidae are male-produced aggregation pheromones that attract both sexes. Research on pheromones in new pests, kairomones in key orchard pests, mating disruption dispensers to generate prolonged release of the pheromones, and trap design and trap location for mass trapping will be required for the expanded use of pheromones and other semiochemicals in orchard pest management in the future.

Si@C/rGO Composite Anode Material for Lithium Ion Batteries (리튬 이온 전지용 음극으로서의 Si@C/rGO의 합성)

  • Chaehyun Kim;Sung Hoon Kim;Wook Ahn
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.2
    • /
    • pp.73-79
    • /
    • 2024
  • As the use of fossil fuels has gradually increased, so has the emission of greenhouse gases such as carbon dioxide, leading to environmental problems. As a result, lithium-ion batteries (LiB) have emerged as the solution to this issue. To manufacture medium to large-sized lithium-ion batteries (LiB), it requires electrodes with high capacity and fast charging capabilities. Silicon (Si) is considered a next-generation anode with high-capacity properties, so, reduced graphene oxide (rGO) was compounded with Si@resorcinol-formaldehyde resin (RF) composite to prevent the volume expansion of Si. It was confirmed that the composite anode prepared exhibited improved capacity and enhanced stability.

Analysis of the Engineering Characteristics of Casein Polymer-Treated Soil Based on Soil Type (시료 유형에 따른 카제인 폴리머 처리토의 공학적 특성 분석)

  • Jung, Sang-Ho;Jang, Chaewoon;Lee, Jeong Yoon;Lee, Uichan;Ryou, Jae-Eun;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.5
    • /
    • pp.51-58
    • /
    • 2024
  • Chemical ground reinforcement involves enhancing the mechanical properties of soil through chemical reactions. Existing ground reinforcement materials pose challenges, including environmental pollution during production and use, pH fluctuations caused by leaching into groundwater, and ecological disturbances. This study investigates the engineering performance of soils treated with casein polymer, a milk-derived, eco-friendly reinforcement material. The performance assessment was carried out by measuring unconfined compressive strength and hydraulic conductivity across different soil types, including Jumunjin sand, granite weathered soil, and soft soils. The analysis examined the relationship between unconfined compressive strength, hydraulic conductivity, and soil type. The findings indicate significant correlations based on the concentration of casein polymer and soil type. The outcomes of this study provide foundational data for the application of casein polymer in soil reinforcement efforts.

Eco-Friendly Production Process of N-Hydroxysuccinimide from Succinic Anhydride (Succinic Anhydride로부터 N-Hydroxysuccinimide의 친환경 생산공정 개발)

  • Goo, Bon Suk;Baek, Jeong yeon;Park, Hwa In;Jung, In Chan;Kim, Woo-Sun
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.91-95
    • /
    • 2020
  • A new eco-friendly synthetic method for N-hydroxysuccinimide (NHS), widely used in the pharmaceutical and fine chemical industries, is developed. Conventional synthesis method yields NHS of about 70% after its reaction with NH2OH to succinic acid. In this method, NHS can be obtained using low-cost succinic acid, but a great deal of solvents are required as an extraction method to purify NHS, while the work-up process is complicated, resulting in low yield. In addition, there is a safety risk due to the high reaction temperature for commercial production, and it is not economical due to the high cost of production from the generation of much waste because of an acid catalyst and the use of various solvents. In order to make up for this shortcoming, this study used succinic anhydride as a raw material under low temperature reaction and developed a new eco-friendly industrial synthesis method using isobutyl alcohol for a single solvent and non-catalytic reaction. The economic evaluation confirms that there is a cost reduction effect of about 20%. In the future, based on this result, studies may establish a commercial production technology through scale-up research and proceed with foreign technology transfer.

Influence of Pesticides and Environmentally Friendly Agricultural Materials used in Tomato Cultivation on the Pathogenicity of the Entomopathogenic Fungus, Beauveria bassiana (토마토재배에 사용하는 농약과 친환경농자재가 곤충 병원성 곰팡이 Beauveria bassiana의 병원성에 미치는 영향)

  • Park, Jong-Ho;Hong, Sung-Jun;Han, Eun-Jung;Shim, Chang-Ki;Lee, Minho;Kim, Min-Jeong;Kim, JeongJun;Kim, Yong-Ki
    • Korean journal of applied entomology
    • /
    • v.51 no.4
    • /
    • pp.357-364
    • /
    • 2012
  • This study was conducted to observe the influence of chemical pesticides and environmentally friendly agricultural materials (EFAMs) used in tomato cultivation on the pathogenicity of the entomopathogenic fungus, Beauveria bassiana. B. bassiana mycelium didn't grow on PDA media containing 13 fungicides including chlorothalonil and colonies were not formed on PDA media containing 12 fungicides. B. bassiana mycelium grew and colonies were formed on all PDA media containing insecticides and EFAMs, but mycelial growth and colony formation on most PDA media were significantly inhibited compared to the control. The insecticidal activity of B. bassiana against Trialeurodes vaporariorum was decreased when fungicides (polyoxin B, mandipropamid) and EFAMs containing sulfur were added, but insecticides (pyridaben, dinotefuran) and EFAMs originated from plant extracts did not have any influence on the insecticidal activity of B. bassiana. The pathogenicity of a mixture of B. bassiana and polyoxin B against T. vaporariorum was lower than that of B. bassiana alone under greenhouse conditions.

Process Development and Economic Evaluation for Catalytic Conversion of Furfural to Tetrahydrofurfuryl Alcohol (푸르푸랄의 화학적 촉매전환을 통한 테트라히드로푸르푸릴 알코올 생산 공정 개발 및 경제성 평가)

  • Byun, Jaewon;Han, Jeehoon
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.609-617
    • /
    • 2017
  • Lignocellulosic biomass is a renewable resource for production of biofuels and biochemicals. Furfural (FF) is an important platform chemical catalytically derived from the hemicellulose fraction of biomass. Tetrahydrofurfuryl alcohol (THFA) is a FF derivative and can be used as an eco-friendly solvent with thermal and chemical stability. Despite large numbers of experimental studies for catalytic conversion of FF to THFA, few research have conducted on the economic feasibility for large-scale THFA production from FF. At the stage of assessment of the potential for commercialization of conversion technology, a large-scale process study is required to identify technological bottleneck and to obtain information for solving scale-up problems. In this study, process simulation and technoeconomic evaluation for catalytic conversion of FF to THFA are performed, as the following three steps: integrated process design, heat integration, and economic evaluation. First, a large-scale process including conversion and separation processes is designed based on experimental results. When the FF processing rate is 255 tonnes per day, the FF-to-THFA yields are 63.2~67.9 mol%. After heat integration, the heating requirements are reduced by 14.4~16.4%. Finally, we analyze the cost drivers and calculate minimum selling price of THFA by economic evaluation. The minimum selling price of THFA for the developed process are $2,120~2,340 per tonne, which are close to the current THFA market price.