• Title/Summary/Keyword: 친환경 여재

Search Result 2, Processing Time 0.014 seconds

Characteristics of soil and eco-friendly media for improving the filterability and water quality in soil filtration (하천수질정화용 토양여과의 여과용량 증대와 수질 개선을 위한 친환경 여재 특성 비교)

  • Ki, Dong-Won;Cho, Kang-Woo;Won, Se-Yoen;Song, Kyung-Guen;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.453-462
    • /
    • 2010
  • Nowadays, the challenges of ensuring good water quality and quantity of river are becoming more important for human society, but there has been troublesome for purifying river water. In this study, we performed the fundamental study of a river water treatment system using riverside soil and eco-friendly optimal media for improving river water quality and can also treat a large amount of river water. As the results of the physical and chemical characterization of the two different soils (Kyungan and Chungrang, The Republic of Korea), which were collected from real stream sides in the Han River basin, and five kinds of media (zeolite, perlite, steel slag, woodchip and mulch), both soils were all classified as a sand, and effective size ($D_{10}$) and uniformity coefficient (U) of the soil were about 0.2 mm and 4 or so, respectively. Through the batch and column experiments with the soil and eco-friendly media, zeolite and mulch were found to be efficient for decreasing nitrogen. In addition, steel slag was especially superior to the other media for phosphorus removal. From soil reforming tests volume ratios were 2.8, 1, and 1 of Kyungan soil, zeolite, and steel slag hydraulic conductivity of mixed soil was increased $1.30{\times}10^{-2}$ from $2.85{\times}10^{-3}$ of Kyungan soil, and the removal efficiencies of nitrogen and phosphorus were also improved. These results show that reforming of the soil enhanced the purification of a large amount of water, and zeolite, mulch, and steel slag might be facilitated as proper functional media.

Screening of the Optimum Filter Media in the Constructed Wetland Systems through Phosphorus Adsorption Capacities (인의 흡착능 평가를 통한 인공습지 하수처리 시스템의 여재 선발)

  • Lee, Hong-Jae;Seo, Dong-Cheol;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.148-152
    • /
    • 2003
  • The phosphorus(P) adsorption capacities of various filter media were investigated in relation to the size and types of fitter media to screen the optimum condition. The objective of this study was to evaluate the constructed wetland longevity by improving P adsorption capacity. The maximum P adsorption capacities of filter media A($4{\sim}10\;mm$), B($2{\sim}4\;mm$) and C($0.1{\sim}2\;mm$) were 8, 10 and 22 mg/kg, respectively, showing those increased as the filter media size decreased. Among the experimental media, the optimum filter media size was $0.1{\sim}2\;mm$. When the filter Medium was supplemented with organic materials which were piled up and decayed in the constructed wetland, the P adsorption capacity was significantly enhanced Under the conditions of optimum fitter media size, the respective Maximum P adsorption capacities of filter media C when supplemented with Ca, Mg, Al and Fe were higher than that of filter media C. However the addition of Ca, Mg, Al and Fe to constructed wetland were not recommended because of the possibility of their secondary pollution. The maximum P adsorption capacity of filter media C was 22 mg/kg, but this was increased to 36 mg/kg when filter media C was supplemented with 2% oyster shell.