• Title/Summary/Keyword: 친환경화

Search Result 84, Processing Time 0.029 seconds

Effect of Kenaf Fiber Content and Length on the Cure Characteristic, Hardness, Tensile Modulus, and Abrasion of Kenaf/Natural Rubber Composites in the Presence and Absence of Kenaf Fiber Treatment with Adhesive Solution (접착용액을 이용한 케나프섬유 처리 유·무에 따른 케나프/천연고무 복합재료의 경화특성, 경도, 인장탄성률 및 마모에 미치는 케나프섬유의 함량 및 길이의 영향)

  • Cho, Yi-Seok;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.19 no.2
    • /
    • pp.60-67
    • /
    • 2018
  • In the present study, when the surface of kenaf, which is an environmentally friendly natural fiber, was treated by using adhesive solution containing Chemlok 402, the effects of fiber surface treatment, fiber content and fiber length on the cure characteristics, hardness, tensile modulus and abrasion resistance of kenaf/natural rubber composites were investigated. The kenaf fiber contents consisting of the composites were varied with 0, 5, 10, 15, and 29 phr at a fixed fiber length of 2 mm and also the fiber length was varied with 2, 35, and 70 mm at a fixed fiber content of 5 phr. The Tmax and tc90 values, Shore A hardness, tensile modulus, and abrasion resistance of natural rubber composites strongly depended on the kenaf fiber content and length. The characteristics of the composite with kenaf fibers treated with the adhesive solution containing Chemlok 402 were higher than those untreated. This is ascribed to the improved interfacial adhesion between the treated kenaf fiber and the rubber matrix. This study suggests that an appropriate use of adhesive solution may be possible to increase the properties of natural fiber-reinforced composites.

Mineral and Compressive Strength Characteristics of Calcium Silicate and Calcium Sulfoaluminate Mixed Cement in Carbon Dioxide Atmosphere (이산화탄소 분위기에서 칼슘실리케이트와 칼슘설포알루미네이트 혼합시멘트의 광물 및 압축강도 특성)

  • Dae-geun Lee;Sun-Mok Lee;Jung-Jun Park;Ki-Yeon Moon;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.10-17
    • /
    • 2023
  • Calcium silicate cement (CSC) is an environmentally sustainable, low-carbon cement and has garnered significant attention in recent studies. However, the pre-curing step required to activate the carbon dioxide reaction and to handle the sample. This study aimed to examine the viability of extending the application of CSC without pre-curing by enhancing initial strength by mixing calcium sulfoaluminate (CSA) fast-hardening cement into CSC. The investigation assessed changes in compression strength and Q-XRD mineral characteristics concerning variations in the mixing ratio of CSC and CSA fast-hardening cement within a carbon dioxide atmosphere. The compressive strength results indicated that the 3-day and 7-day strengths were 14.18 MPa and 22.98 MPa, respectively, under the 50% CSC condition, meeting the type 1 cement KS standard. Mineral characteristics analysis revealed an increase in calcite mineral, a byproduct of the carbon dioxide reaction, contributing to strength enhancement. Even after seven days, substantial quantities of unreacted rankinitene and pseudowollastonite were observed, as well as dicalcium silicate and yeelimite, which are hydrated minerals. This observation was confirmed the possibility of strength improvement after 7 days.

Evaluation of Flexural Performance of Eco-Friendly Inorganic Binding Material RC Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 무기결합재 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Kim, Jin-Hwan;Jang, Kie-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.261-269
    • /
    • 2013
  • In this study, it was developed eco-friendly inorganic binding material concrete using ground granulated blast furnace slag and alkali activator (water glass, sodium hydroxides). Eight reinforced concrete beam using inoganic binding material concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, type of admixture and admixture. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The eco-friendly concrete using inorganic binding material encouraged alkali activation reaction was rapidly hardening speed and showed possibility as a high strength concrete. Also, the RC beams using new materials showed similar behavior and failed similarly with RC beam used portland cement. It is thought that eco-friendly inorganic binding material concrete can be used with construction material and product as a basic research to replace cement concrete. If there is application to structures in PC member as well as production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Construction of Fuzzy Logic Based on Knowledge for Greenery Warranty Systems (그린 보증시스템을 위한 지식기반 퍼지로직 구축)

  • Lee, Sang-Hyun;Lee, Sang-Joon;Moon, Kyeong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.17-25
    • /
    • 2011
  • Green IT, composed term with Green and Information Technology(IT), use IT for energy savings and carbon emission reductions. Green IT went beyond the scope of greening IT, and recently it's concept is expanded as far as counterplan of climate change including greening other industries by IT. 85% of total greenhouse gas emissions from the energy sector and 20% of them comes from transport parts, so it is time to research IT for automotive industry. In this paper, we take up the knowledge based fuzzy logic to provide life cycle analysis associated with greenhouse gas emissions for industry produced warranty claims frequently such as automobile industry. We propose a analysis method of warranty claims using expert knowledge about the warranty in car exhaust systems related to greenhouse gas emissions, past test results of malfunction, analysis of past field data, and warranty data. Furthermore, we propose life knowledge-based GWS (Greenery Warranty System). We demonstrate the applicability of IT in eco-friendly automotive industry by implementing knowledge-based fuzzy logic and applying.

The mechanical properties of welded joint in high strength hot rolled steel for heavy machinary (중장비용 고강도 열연강재의 용접부 특성)

  • Jeong, H.C.;Lee, J.S.;Lee, J.W.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.63-63
    • /
    • 2009
  • 최근 연비 향상 및 배기가스 저감을 위한 친환경 경량 굴삭기에 대한 연구가 활발히 진행되고 있다. 이러한 시도는 굴삭기의 소재의 강도를 490MPa급에서 700MPa급으로 고강도화를 통하여 작업장치의 경량화를 도모하고 있다. 본 연구에서는 중장비용 고강도 열연강재로 재발중인 ATOS70강재의 기본 용접성 및 GMAW 용접부 특성을 검토하였다. 사용한 시험재는 현장시험재인 14~16mmt두께의 ATOS70강재를 사용하였고, 용접경화성 및 저온균열감수성을 평가하였다. 또한 GMAW 용접을 실시하여 용접부의 이음부 특성을 검토하였다. 14mmt 두께의 ATOS70강재의 탄소당량은 약 0.44수준이고, 모재 인장강도는 약 760MPa급 수준을 보였다. 한편 최고경도시험에 의한 용접부 최도경도는 약 300Hv 수준을 보였으며, 경사 y-groove구속시험에 의한 14mmt두께의 한계예열온도는 상온이었다. 한편 GMAW 용접부 인장시험결과 740MPa급 이상의 인장강도를 확보하였고, $-5^{\circ}C$ 용접부 Charpy 충격시험결과 48J 이상의 충격인성을 나타내었다.

  • PDF

오스테나이트계 스테인레스강의 플라즈마 질화공정에 의한 내식성 평가에 대한 고찰

  • Yeo, Guk-Hyeon;Park, Yong-Jin;Kim, Sang-Gwon;Lee, Jae-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.254-254
    • /
    • 2012
  • 최근 친환경 에너지원 및 에너지 저감기술을 바탕으로 한 자동차 부품산업이 재편되고 있다. 그 중, 극한의 산화전해질 환경에서 견뎌야하는 연료전지 분리막 소재와, 자동차 연비향상을 위한 엔진소재 개발 경쟁이 가열되는 상황이다. 이러한 소재에는 공통적으로 고 내식성과 내 마모성의 특성이 요구되는데, 스테인레스강은 이러한 조건에 적합한 소재이다. 왜냐하면, 사용분위기에 의해 산화막이 두꺼워지고 이로 인해 저항이 증가하는 현상 때문에 연료전지 부품에 질화를 하여 이런한 현상이 일어나지 않으면서 내식성은 유지하기 때문이다. 하지만, 표면경도가 낮아 내 마모성 저하로 부품의 수명을 떨어뜨리는 단점이 있다. 따라서, 고 내식성 유지하되, 표면경도는 향상하는 기술이 필요한데, S-phase 과고용 질화기술은 이러한 문제를 해결할 것으로 보여진다. 하지만, 이러한 층의 형성에도 불구하고, 스테인레스강 자체 소재제작 과정에서의 품질문제 및 가공경화로 인한 문제와 더불어 질화처리 후 표면계질의 석출상이나 크랙형성으로 인해 내식성은 오히려 저감되는 문제를 지니고 있다. 이에 대한 대안으로, 표면 질화처리 후 침탄 공정을 추가 도입하였다. 따라서, 본 연구 에서는 기존 질화공정에서 내식성 저하원인에 대한 분석 및 고찰하고, 또한 새롭게 제안된 질화 침탄 기술을 통해 질소뿐만 아니라 탄소원자의 침입으로 내식성 저하를 방지하는 동시에 표면경도 향상하는 새로운 연구결과를 보여주고자 한다.

  • PDF

Effects of Fume silica on synthesis of New Austria Tunnel Method Resin for new material in space aviation (우주항공의 신소재를 위한 New Austria Tunnel Method 수지합성에 대한 Fume silica의 영향)

  • Kim, Kijun;Lee, Jooho;Park, Taesul;Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.595-601
    • /
    • 2014
  • The microstructures of NATM were examined by SEM, FT-IR spectra, tensile properties, mole % of [NCO/OH], and particle size analyzer. Growing concerns in the environment-friendly industries have led to the development of solvent-free formulations that can be cured. We had synthesized NATM(New Austria Tunnel Method) resin having the ability to protect stainless steel against corrosion. Comparing with general NATM resin and coatings, this resin that synthesized with polyurethane and epoxy was highly stronger in intensity and longer durability. Hybrid resin was composed of polyols, MDI, epoxy, silicone surfactant, catalyst and crosslink agent, and fillers. Moreover, fillers such as fume silica not only accelerated the curing rate but also improved the physical property as thermal barriers. The rigid segments of synthetic resin in mechanical properties were due to fume silica and the increase the mole% of [NCO/OH] for corrosion protection. In conclusion, the hybrid resin microstructure with crosslink agent and fume silica are good material for thermosetting coating of metal substrates such as stainless steel.

Modification of Water-borne Polyurethane Using Benzophenone Crosslinker (Benzophenone 가교제를 이용한 수분산 폴리우레탄 개질)

  • Kim, HyeokJin;Kim, Jin Chul;Chang, SangMok;Seo, BongKuk
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.221-226
    • /
    • 2016
  • Production of eco-friendly and biologically harmless materials is strongly required in all industries. In particular, reducing volatile organic compounds in coating processes is extremely important to secure worker's safety. During recent two decades, extensive research works on water-borne polyurethane dispersion (PUD) have been continuously developed as an alternative to solvent-borne polyurethane. However, PUD was shown inferior mechanical properties to the organic solvent-borne polyurethane due to a limit to the molecular weight increase, which resulted in the limit of applications. To overcome this drawback, several approaches have been examined such as polymer blends and thermal/radiation induced crosslinking. Among these methods, the radiation curing system was suitable for industrialization because of the high crosslinking density and fast curing speed. In this study, we overcame the drawback for PUD via introducing benzophenone radiation curable units to PUD. We synthesized PUD films which possessed good dispersion in water for 30 days, increased Tg and Td more than $5^{\circ}C$ after UV curing film as well as improved young's modulus more than double.

Properties of Eco-Construction Material Using Recycled Sewage Sludge Ash (하수슬러지 소각재를 재활용한 친환경 건설 소재의 재료적 특성)

  • Jo, Byung-Wan;Lee, Jea-Ik;Park, Seung-Kook;Lee, Jae-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.667-676
    • /
    • 2007
  • As the 21st century began, cement and concrete that are representatives of modem building materials became a major factor in global warming, air pollution and environmental pollution. Also, the problems that are generated while pursuing high performance and high strength became social issues. Therefore, it has become urgent to prepare counter plans. This study has aimed at the recycling of sewage sludge ash and developing it as a new concept in building material which serves the environmental considerations for long-lasting developmental purpose. Also, the study aimed to find a substitute for scarce natural resources and to secure high techniques for waste recycling. The purpose of this study was also to solve fundamentally secondary environmental pollution. The results revealed that the chemical components of sewage sludge ash are mainly $SiO_2\;and\;Al_2O_3$ which are similar to the components of pozzolan. Also, it was identified that sewage sludge ash can be utilized as a hardened specimen with an alkali activated pozzolan reaction. Considering the possibility of appropriate strength development and the advantage of drying shrinkage, compared with that of cement, it was believed that sewage sludge ash can demonstrate a function as a substitute for cement given.

A Study on the Competitive Factor of Global Logistics Hub Cities Using a Importance-Performance Analysis : Focusing on the Case of Incheon Metropolitan City (IPA분석을 통한 글로벌 물류 허브도시 경쟁요인에 관한 연구 : 인천광역시 사례를 중심으로)

  • Lee, Myeong-Hwa;Shin, Mi-Na;Kim, Un-Soo
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.2
    • /
    • pp.205-219
    • /
    • 2024
  • This study assesses Incheon Metropolitan City's potential as a global logistics hub amid intensified competition since the 2000s. Utilizing Importance-Performance Analysis(IPA), it evaluates competitive factors for logistics hub cities and Incheon's current positioning. The research identifies world-class infrastructure development and global city connectivity as key competitiveness factors. While Incheon, with its international airport and port, currently functions as a logistics hub, areas for improvement emerge. Recommendations include developing specialized cargo infrastructure for cold-chain and e-commerce, expanding the global network through multimodal transportation, and addressing gaps in smart and eco-friendly logistics. These suggestions encompass professional training, information platform establishment, and sector-wide decarbonization initiatives. The study's significance lies in its IPA-driven evaluation of competitiveness factors and Incheon's status, providing actionable recommendations for strategic planning to enhance the city's position as a global logistics hub.