• Title/Summary/Keyword: 치료 알고리즘

Search Result 263, Processing Time 0.027 seconds

Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm (선량계산 및 최적화 알고리즘에 따른 치료계획의 영향 분석)

  • Kim, Dae-Sup;Yoon, In-Ha;Lee, Woo-Seok;Baek, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • Purpose: Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. Materials and Methods: The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, $30{\times}30{\times}30$ cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. Results: In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. Conclusion: In this study, do not judge the rightness of the dose calculation algorithm. However, analyzing the characteristics of the dose distribution represented by each algorithm, especially, a method for the optimal treatment plan can be presented when make a treatment plan. by considering optimized algorithm factors of the IMRT or VMAT that needs to optimization make a treatment plan.

  • PDF

An Accelerated Approach to Dose Distribution Calculation in Inverse Treatment Planning for Brachytherapy (근접 치료에서 역방향 치료 계획의 선량분포 계산 가속화 방법)

  • Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.633-640
    • /
    • 2023
  • With the recent development of static and dynamic modulated brachytherapy methods in brachytherapy, which use radiation shielding to modulate the dose distribution to deliver the dose, the amount of parameters and data required for dose calculation in inverse treatment planning and treatment plan optimization algorithms suitable for new directional beam intensity modulated brachytherapy is increasing. Although intensity-modulated brachytherapy enables accurate dose delivery of radiation, the increased amount of parameters and data increases the elapsed time required for dose calculation. In this study, a GPU-based CUDA-accelerated dose calculation algorithm was constructed to reduce the increase in dose calculation elapsed time. The acceleration of the calculation process was achieved by parallelizing the calculation of the system matrix of the volume of interest and the dose calculation. The developed algorithms were all performed in the same computing environment with an Intel (3.7 GHz, 6-core) CPU and a single NVIDIA GTX 1080ti graphics card, and the dose calculation time was evaluated by measuring only the dose calculation time, excluding the additional time required for loading data from disk and preprocessing operations. The results showed that the accelerated algorithm reduced the dose calculation time by about 30 times compared to the CPU-only calculation. The accelerated dose calculation algorithm can be expected to speed up treatment planning when new treatment plans need to be created to account for daily variations in applicator movement, such as in adaptive radiotherapy, or when dose calculation needs to account for changing parameters, such as in dynamically modulated brachytherapy.

A Study on the Temperature Controlling of Driving Algorithm for the Electronic Shutter by the Laser Beam (레이저빔에 의한 전자셔터 구동 알고리즘의 온도제어에 관한 연구)

  • Lee, Young-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.87-92
    • /
    • 2005
  • This study showed the possibility of the medical treatment by thermal feedback as the laser medical treatment had given by design of the digital I/O interfaces of the electronic shutter to control the laser beam and the temperature controlled algorithm. The electronic shutter is economical and that is designed to be automatically controlled within the range of an extent temperature by such development of its driving interfaces and the controlled algorithm of the electronic shutter. The possibility of local therapy for the patients by the treatment of the laser beam within an extent temperature controlled, is proposed by improvement of the problems on the current treatment methods such as radiotherapy, high frequency treatment or medical therapy of drug stuffs which even kill the normal cells.

  • PDF

Study on Computerized Treatment Plan of Field-in-Field Intensity Modulated Radiation Therapy and Conventional Radiation Therapy according to PBC Algorithm and AAA on Breast Cancer Tangential Beam (유방암 접선조사에서 PBC 알고리즘과 AAA에 따른 Field-in-Field Intensity Modulated Radiation Therapy와 Conventional Radiation Therapy 전산화 치료계획에 대한 고찰)

  • Yeom, Mi-Suk;Bae, Seong-Soo;Kim, Dae-Sup;Back, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.11-14
    • /
    • 2012
  • Purpose: Anisotropic Analytical Algorithm (AAA) provides more accurate dose calculation regarding impact on scatter and tissue inhomogeneity in comparison to Pencil Beam Convolution (PBC) algorithm. This study tries to analyze the difference of dose distribution according to PBC algorithm and dose calculation algorithm of AAA on breast cancer tangential plan. Materials and Methods: Computerized medical care plan using Eclipse treatment planning system (version 8.9, VARIAN, USA) has been established for the 10 breast cancer patients using 6 MV energy of Linac (CL-6EX, VARIAN, USA). After treatment plan of Conventional Radiation Therapy plan (Conventional plan) and Field-in-Field Intensity Modulated Radiation Therapy plan (FiF plan) using PBC algorithm has been established, MU has been fixed, implemented dose calculation after changing it to AAA, and compared and analyzed treatment plan using Dose Volume Histogram (DVH). Results: Firstly, as a result of evaluating PBC algorithm of Conventional plan and the difference according to AAA, the average difference of CI value on target volume has been highly estimated by 0.295 on PBC algorithm and as a result of evaluating dose of lung, $V_{47Gy}$ and $V_{45Gy}$ has been highly evaluated by 5.83% and 4.04% each, Mean dose, $V_{20Gy}$, $V_{5Gy}$, $V_{3Gy}$ has been highly evaluated 0.6%, 0.29%, 6.35%, 10.23% each on AAA. Secondly, in case of FiF plan, the average difference of CI value on target volume has been highly evaluated on PBC algorithm by 0.165, and dose on ipsilateral lung, $V_{47Gy}$, $V_{45Gy}$, Mean dose has been highly evaluated 6.17%, 3.80%, 0.15% each on PBC algorithm, $V_{20Gy}$, $V_{5Gy}$, $V_{3Gy}$ has been highly evaluated 0.14%, 4.07%, 4.35% each on AAA. Conclusion: When calculating with AAA on breast cancer tangential plan, compared to PBC algorithm, Conformity on target volume of Conventional plan, FiF plan has been less evaluated by 0.295, 0.165 each. For the reason that dose of high dose region of ipsilateral lung has been showed little amount, and dose of low dose region has been showed much amount, features according to dose calculation algorithm need to be considered when we evaluate dose for the lungs.

  • PDF

Comparison of Three- and Four-dimensional Robotic Radiotherapy Treatment Plans for Lung Cancers (폐암환자의 종양추적 정위방사선치료를 위한 삼차원 및 사차원 방사선치료계획의 비교)

  • Chai, Gyu-Young;Lim, Young-Kyung;Kang, Ki-Mun;Jeong, Bae-Gwon;Ha, In-Bong;Park, Kyung-Bum;Jung, Jin-Myung;Kim, Dong-Wook
    • Radiation Oncology Journal
    • /
    • v.28 no.4
    • /
    • pp.238-248
    • /
    • 2010
  • Purpose: To compare the dose distributions between three-dimensional (3D) and four-dimensional (4D) radiation treatment plans calculated by Ray-tracing or the Monte Carlo algorithm, and to highlight the difference of dose calculation between two algorithms for lung heterogeneity correction in lung cancers. Materials and Methods: Prospectively gated 4D CTs in seven patients were obtained with a Brilliance CT64-Channel scanner along with a respiratory bellows gating device. After 4D treatment planning with the Ray Tracing algorithm in Multiplan 3.5.1, a CyberKnife stereotactic radiotherapy planning system, 3D Ray Tracing, 3D and 4D Monte Carlo dose calculations were performed under the same beam conditions (same number, directions, monitor units of beams). The 3D plan was performed in a primary CT image setting corresponding to middle phase expiration (50%). Relative dose coverage, D95 of gross tumor volume and planning target volume, maximum doses of tumor, and the spinal cord were compared for each plan, taking into consideration the tumor location. Results: According to the Monte Carlo calculations, mean tumor volume coverage of the 4D plans was 4.4% higher than the 3D plans when tumors were located in the lower lobes of the lung, but were 4.6% lower when tumors were located in the upper lobes of the lung. Similarly, the D95 of 4D plans was 4.8% higher than 3D plans when tumors were located in the lower lobes of lung, but was 1.7% lower when tumors were located in the upper lobes of lung. This tendency was also observed at the maximum dose of the spinal cord. Lastly, a 30% reduction in the PTV volume coverage was observed for the Monte Carlo calculation compared with the Ray-tracing calculation. Conclusion: 3D and 4D robotic radiotherapy treatment plans for lung cancers were compared according to a dosimetric viewpoint for a tumor and the spinal cord. The difference of tumor dose distributions between 3D and 4D treatment plans was only significant when large tumor movement and deformation was suspected. Therefore, 4D treatment planning is only necessary for large tumor motion and deformation. However, a Monte Carlo calculation is always necessary, independent of tumor motion in the lung.

Implementation of ICD(Implantable Cardioverter Defibrillator) Algorithm and Simulator for Detecting and Treatment of Patient with Arrhythmia (부정맥 환자의 진단 및 치료를 위한 ICD 알고리즘 및 시뮬레이터 구현)

  • Shin, K.S.;Kim, J.K.;Shin, H.S.;Lee, C.K.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.127-128
    • /
    • 2008
  • 현대인의 생활 습관 및 고령화 사회의 도래에 따라 심장질환자의 수는 기하급수적으로 늘어가고 있으며 특히 정맥 환자는 그 중에서 가장 큰 분포를 차지하고 있다. 따라서 심장질환의 검출 및 치료를 위한 기기의 개발 및 발전이 시급하다고 볼 수 있다. 그 중 본 고에서는 인체 이식형/삽입형 Pacemaker인 ICD(Implantable Cardioverter Defibrillator)의 알고리즘을 소개하고자 한다. 본 고의 전체적인 구조는 ICD 기술의 필요성을 제시하고 본론에서는 부정맥(Arrhythmia) 소개 및 구현 대상, ICD 알고리즘 관련 국내외 현황, 빈맥의 검출 및 치료, 서맥의 검출 및 치료, 시뮬레이터 구현의 내용을 담았다 또한 알고리즘의 모듈 단위 구성도와 시뮬레이터(Simulator) UI(User Interface)를 제시하였다.

  • PDF

Transmission Dose Estimation Algorithm for Tissue Deficit (조직 결손에 대한 투과선량 계산 알고리즘 보정)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Lee Hyoung Koo;Woo Hong Gyun;Shin Kyo Chul;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, previous algorithm for estimation of transmission dose was modified for use in cases with tissue deficit. Materials and Methods : The beam data was measured with flat solid phantom in various conditions of tissue deficit. New algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. The algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients using multiple sheets of solid phantoms. Results : The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ${\pm}1.0\%$ in most situations and within ${\pm}3.0\%$ in experimental settings with irregular contours mimicking breast cancer treatment set-up. Conclusion : Developed algorithm could accurately reflect the effect of tissue deficit and irregularly shaped body contour on transmission dosimetry.

The Self-healing Method using Services Level in ATM-VP Network (ATM-VP 전송망에서의 서비스 레벨 분류에 의한 Self-healing 방법)

  • Lee, Dong-Wook;Hong, Choong-Seon;Lee, Dae-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11
    • /
    • pp.3500-3508
    • /
    • 2000
  • In is proposed that the algorithm for self-healing to restoration the backup-VP occurrence error in ATM network. Backup-VP used method is one of the most used algorithm. Most of the problem of backup-VP used algorithm occurts heavily when backup-VP is fault new algorithm is proposed to repair this problem which senup secondary backup-VP. The sccondary gackup-VP algorithm has many disadvantages in mitial setup. That is it requires too manyy calculation. To setile preseribed problem, this thesis proose quality of serviec algorithm to propose of the present problem. Analysis is adopted.

  • PDF

The Application of Chamfer Matching Algorithm to the Error Analysis of a Treatment Field between a Simulation Image and a Portal Image (챔퍼 매칭(Chamfer Matching) 알고리즘을 활용한 모의치료 영상과 포탈(Portal) 영상의 비교, 분석)

  • 송주영;나병식;정웅기;안성자;남택근;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.189-195
    • /
    • 2003
  • The comparative analysis of a portal image and a simulation image is a very important process in radiotherapy for verifying the accuracy of an actual treatment field. In this study, we applied a chamfer-matching algorithm to compare a portal image with a simulation image and verified the accuracy of the algorithm to analyze the field matching error in the portal image. We also developed an analysis program that could analyze the two images more effectively with a chamfer-matching method and demonstrated its efficacy through a feasibility study. With virtual portal images, the accuracy of the analysis algorithm were acceptable considering the average error of shift (0.64 mm), rotation (0.32$^{\circ}$), and scale (1.61%). When the portal images of a head and neck phantom were analyzed, the accuracy and suitability of the developed analysis program was proven considering the acceptable average error of shift (1.55 mm), rotation (0.80$^{\circ}$), and scale (1.72%). We verified the applicability of a chamfer-matching algorithm to the comparative analysis of a portal image with a simulation image. The analysis program developed in this study was a practical tool to calculate the quantitative error of the treatment field in a portal image.

  • PDF

Developing an Artificial Neural Network Based Rehabilitation System for Stroke Victims. (신경망을 이용한 뇌졸중 환자의 재활치료 시스템 개발에 관한 연구)

  • Kim, Chung-Ho;Kim, Byung-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.229-231
    • /
    • 2013
  • 본 논문은 신경망 알고리즘을 사용하여 사람의 필기체 문자를 인식하였고, 이를 바탕으로 뇌졸중 환자의 재활치료를 돕는 시스템을 구현하였다. 뇌졸중 환자의 재활치료에서는 단기간에 환자에게 반복적인 행동 및 학습하는 것이 효율적이라고 알려져 있다. 본 연구에서는 뇌졸중 환자에게 문자 템플릿을 보여주었고, 환자는 문자 템플릿을 인지하고 문자 템플릿과 같은 형태의 문자를 쓰게 하는 방식을 사용하였다. 뇌졸중 환자가 쓴 필기체 문자를 신경망 알고리즘을 사용하여 인식하고, 자주 틀리는 문자에 대해 추천시스템 방식을 사용하여 틀린 문자와 모양이 비슷하거나 같은 문자를 추천해줌으로써 문자 쓰기학습의 반복을 유도하였다. 실험을 통해 제안한 시스템은 뇌졸중 환자의 인지장애와 손 기능장애에 대한 재활치료의 효과를 상승시켰다.