• Title/Summary/Keyword: 층화표본

Search Result 142, Processing Time 0.018 seconds

Adaptive Importance Sampling Method with Response Surface Technique (응답면기법을 이용한 적응적 중요표본추출법)

  • 나경웅;김상효;이상호
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.309-320
    • /
    • 1998
  • 중요표본추출기법중에서도 층화표본추출법을 이용한 적응적 중요표본추출기법이 일반적으로 가장 합리적인 것으로 알려져 있다. 그러나 확률장 유한요소모형문제와 같이 기본 확률변수의 규모가 큰 경우에는 층화표본추출법에서 요구되는 기본적인 표본점의 규모가 급증하여 효율성이 떨어지게 된다. 본 연구에서는 이러한 한계성을 극복하기 위하여 층화표본추출에서 기본확률변수를 사용하는 대신에 기본확률변수들의 함수이며 새로운 확률변수인 응답값을 이용하는 방법을 개발하였다. 여기에서 응답값은 일반적인 함수형태로 표시되지 않으며, 한 번의 응답계산에 많은 계산량이 소요되므로 이러한 문제점을 해결하기 위하여 응답면식을 이용한 층화표본추출법을 개발하였다. 개발된 기법에서는 기본확률변수의 모의발생규모는 기본의 기본확률변수를 이용한 층화표본추출법에서 보다 증가하지만 매우 많은 계산량을 요구하는 실제응답해석규모는 응답면식을 이용함으로써 획기적으로 감소되었다. 특히 본 기법은 기본확률변수의 규모가 크고 대상한계상태의 파괴확률이 낮을수록 기존의 방법과 비교해 효율성이 증대되는 것으로 분석되었다.

  • PDF

Efficient Use of Auxiliary Information through the Stratified Sampling and Systematic Sampling Design (층화추출과 계통추출을 이용한 효율적인 보조정보 사용)

  • Kim, Gwan-Su;Park, Min-Gue
    • Survey Research
    • /
    • v.10 no.1
    • /
    • pp.155-168
    • /
    • 2009
  • As an efficient sampling design, stratified random sampling is often used when auxiliary information is available at the designing stage. Although one - per - stratum design is an efficient design that can be used when many auxiliary variables are available, it does not provide any unbiased variance estimator. With a two - per - stratum sample in which two elements are selected from each stratum, it is possible to obtain an unbiased variance estimator. However the loss of efficiency could be significant if any important stratification variable is missed. In this study, we investigated a sampling design that uses the all given auxiliary information and also permits an unbiased variance estimator suggested by Park and Fuller(2008). Through a simulation study, we compared several stratified random sampling and systematic sampling design. We also applied the proposed stratified sampling designs to 2007 youth panel data.

  • PDF

Optimum Selection Probabilites in Stratified Two-stage Sampling (층화 이단계 표본추출시 최적 선택율)

  • 신민웅;오상훈
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.2
    • /
    • pp.429-437
    • /
    • 2001
  • 단순 이단계 표본 추출의 경우에 최적 선택률은 Hansen과 Hurwitz(1949)에 의하여 구하여졌다. 그러나 통계청에서 실시하는 표본조사등은 층화 이단계 추출을 한다. 따라서 실제적인 필요성에 의하여 층화 2단계 표본 설계를 시도 하였다. 층화 이단계 표본추출시에 주어진 비용아래서 모총계의 추정량의 분산을 최소로 하는 최적의 선택확률(optimum selection probability), 표본추출율과 부차 표본추출율을 Lagrangean 승수법에 의하여 구한다.

  • PDF

표본배분에 관한 소고

  • 김종호
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.3
    • /
    • pp.299-302
    • /
    • 1996
  • 표본조사에 있어서 층화추출법은 모집단에 관한 예비정보를 필요로 하고 있다. 조사자가 표본설계시 층화와 표본배분의 문제를 막연히 추상적으로 처리함으로 생기는 오류를 줄이기 위해서 다원적 입장에서 모집단에 대한 예비 정보를 정확하게 파악하고 이용해야 층화추출법의 효율을 올릴 수 있음을 지적하고 있다.

  • PDF

A Stratified and Two Sample Stratified Conditional Unrelated Question Model (층화 및 층화 이표본 조건부 무관질문모형)

  • Lee, Gi-Sung
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2883-2893
    • /
    • 2018
  • We suggest a stratified conditional unrelated question randomized response model to more efficiently estimate a sensitive character A when the population is composed of several strata. In that model, only the respondents who answered "yes" through randomization device which was consisted of a less sensitive character B and a question forcing to answer "yes" respond to our suggested model and we deal with two allocation problems of proportional allocation and optimal one. We expand the suggested model into two sample stratified conditional unrelated question model to cover the case of unknowing unrelated character and deduce minimal variance through optimal sample size of stratum h. Finally, we show that the suggested model is more efficiency than stratified unrelated models and the stratified Carr et al.'s model (1982) under some given conditions, and show numerically that the smaller the values ${\pi}_{h2}$ and ${\pi}_{hy}$, the more efficiency the fit of the model.

Multivariate Stratification Method for the Multipurpose Sample Survey : A Case Study of the Sample Design for Fisher Production Survey (다목적 표본조사를 위한 다변량 층화 : 어업비계통생산량조사를 위한 표본설계 사례)

  • Park, Jin-Woo;Kim, Young-Won;Lee, Seok-Hoon;Shin, Ji-Eun
    • Survey Research
    • /
    • v.9 no.1
    • /
    • pp.69-85
    • /
    • 2008
  • Stratification is a feature of the majority of field sample design. This paper considers the multivariate stratification strategy for multipurpose sample survey with several auxiliary variables. In a multipurpose survey, stratification procedure is very complicated because we have to simultaneously consider the efficiencies of stratification for several variables of interest. We propose stratification strategy based on factor analysis and cluster analysis using several stratification variables. To improve the efficiency of stratification, we first select the stratification variables by factor analysis, and then apply the K-means clustering algorithm to the formation of strata. An application of the stratification strategy in the sampling design for the Fisher Production Survey is discussed, and it turns out that the variances of estimators are significantly less than those obtained by simple random sampling.

  • PDF

Adaptive Searching Estimation in Stratified Spatial Sample design (적합탐색 관찰을 이용한 층화 공간표본설계에서의 추정)

  • 변종석
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.353-369
    • /
    • 2000
  • We systematized an stratified spatial sample design(SSSD) that uses the adequate stratification criteria such as the shapeness or the dispersion of an interesting region in a spatial population. And we proposed an adaptive searching estimation method in the SSSD to estimate the area of region of interest in two-dimensional surfaces. When wc adopt the proposed adaptive searching estimation method in SSSD, the observing sample size is more decreased than a classical sample design that all the designed sample size is observed. Nevertheless it has been shown that we can produce the moderate result but the efficiency is a slight reduced.

  • PDF

Multivariate Stratification under Consideration of Outliers (이상점을 고려한 다변량 층화)

  • Park, Jin-Woo;Yun, Seok-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.3
    • /
    • pp.377-385
    • /
    • 2008
  • Most of the sample surveys conducted by several statistics preparation agencies are multipurpose surveys inquiring into several distinguishing items through a single sample. In a multipurpose sample design, the stratification tends to be very complex since the stratification variables which are both multivariate and heterogeneous must be considered collectively. In this paper we point out an outlier effect in a multivariate stratification to which the K-means clustering method is applied and propose to consider outliers prior to the stratification step. We also show an empirical stratification effect under consideration of outliers through a case study of sample design for The Rural Living Indicators.

A Sampling Design of the Non-consignment Fishery Products (수산물 비계통 생산량 조사를 위한 표본설계 연구)

  • 박진우
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • 수산물 비계통 생산량 조사는 수산물 생산량 조사 중 어가부분에서 비계통 출하된 양에 대한 표본조사이다. 본연구는 1995년 어업 총조사 자료에 근거하여 새로운 표본 설계를 제안하는 것을 목적으로 한다. 표본은 층화 2단 집락 추출방식에 의해 추출되었으며 층화변수로는 어업조사구 내의 일반어류 어가 비율을 사용하였다.

A Study on Sample Allocation for Stratified Sampling (층화표본에서의 표본 배분에 대한 연구)

  • Lee, Ingue;Park, Mingue
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1047-1061
    • /
    • 2015
  • Stratified random sampling is a powerful sampling strategy to reduce variance of the estimators by incorporating useful auxiliary information to stratify the population. Sample allocation is the one of the important decisions in selecting a stratified random sample. There are two common methods, the proportional allocation and Neyman allocation if we could assume data collection cost for different observation units equal. Theoretically, Neyman allocation considering the size and standard deviation of each stratum, is known to be more effective than proportional allocation which incorporates only stratum size information. However, if the information on the standard deviation is inaccurate, the performance of Neyman allocation is in doubt. It has been pointed out that Neyman allocation is not suitable for multi-purpose sample survey that requires the estimation of several characteristics. In addition to sampling error, non-response error is another factor to evaluate sampling strategy that affects the statistical precision of the estimator. We propose new sample allocation methods using the available information about stratum response rates at the designing stage to improve stratified random sampling. The proposed methods are efficient when response rates differ considerably among strata. In particular, the method using population sizes and response rates improves the Neyman allocation in multi-purpose sample survey.