• Title/Summary/Keyword: 층상 반무한체

Search Result 5, Processing Time 0.02 seconds

Estimation of Shear-Wave Velocities of Layered Half-Space Using Full Waveform Inversion with Genetic Algorithm (유전 알고리즘을 활용한 완전파형역산 기법의 층상 반무한 지반 전단파 속도 추정)

  • Lee, Jin Ho;Lee, Se Hyeok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.221-230
    • /
    • 2021
  • This paper proposes full waveform inversion (FWI) for estimating the physical properties of a layered half-space. An FWI solution is obtained using a genetic algorithm (GA), which is a well-known global optimization approach. The dynamic responses of a layered half-space subjected to a harmonic vertical disk load are measured and compared with those calculated using the estimated physical properties. The responses are calculated using the thin-layer method, which is accurate and efficient for layered media. Subsequently, a numerical model is constructed for a layered half-space using mid-point integrated finite elements and perfectly matched discrete layers. An objective function of the global optimization problem is defined as the L2-norm of the difference between the observed and estimated responses. A GA is used to minimize the objective function and obtain a solution for the FWI. The accuracy of the proposed approach is applied to various problems involving layered half-spaces. The results verify that the proposed FWI based on a GA is suitable for estimating the material properties of a layered half-space, even when the measured responses include measurement noise.

Markov Chain Monte Carlo Simulation to Estimate Material Properties of a Layered Half-space (층상 반무한 지반의 물성치 추정을 위한 마르코프 연쇄 몬테카를로 모사 기법)

  • Jin Ho Lee;Hieu Van Nguyen;Se Hyeok Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.203-211
    • /
    • 2023
  • A Markov chain Monte Carlo (MCMC) simulation is proposed for probabilistic full waveform inversion (FWI) in a layered half-space. Dynamic responses on the half-space surface are estimated using the thin-layer method when a harmonic vertical force is applied. Subsequently, a posterior probability distribution function and the corresponding objective function are formulated to minimize the difference between estimations and observed data as well as that of model parameters from prior information. Based on the gradient of the objective function, a proposal distribution and an acceptance probability for MCMC samples are proposed. The proposed MCMC simulation is applied to several layered half-space examples. It is demonstrated that the proposed MCMC simulation for probabilistic FWI can estimate probabilistic material properties such as the shear-wave velocities of a layered half-space.

A Study on the Depth Dependent Characteristics of Earthquake Ground Motions in a Layered Ground Medium Using Point Source Models (점진원모델을 사용한 층상지반에서의 깊이에 따른 지반운동 특성 변화연구)

  • Koh, Hyun Moo;Kim, Jae Kwan;Kwon, Ki Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.453-462
    • /
    • 1994
  • Variation of seismic wave field in a multi-layered attenuating elastic half space is studied by the propagator matrix method and point source models of which fault-slip functions are defined as ramp functions. In this paper, the earth is modeled as being composed of horizontally stratified layers, with uniform material properties for each layer. The partial differential equations for the seismic motion in each layer are solved using a Fourier Hankel transform approach. Time histories and frequency contents of accelerations and displacements due to a vertical dip-slip and strike-slip point source located in the underlain half space are calculated at the layer interfaces using the developed programs and their characteristics are represented.

  • PDF

Synthesis of Earthquake Ground Motion by Combining Stochastic Line Source Model with Elastic Wave Propagation Analysis Method in a Layered Half Space (추계학적 선진원 모델과 층상반무한체에서의 탄성파 전파 해석법에 의한 지진 지반운동 합성)

  • KIM, Jae Kwan;KWON, Ki Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.97-105
    • /
    • 1996
  • A Stochastic line source model is developed to simulate the seismic wave field generated during the rupture propagation process along a fault plane of which length is much larger than its width. The fault plane is assumed to consist of randomly distributed slip zones and barriers and each slip zone is modeled as a point source. By combining the newly developed source model with wave propagation analysis method in a layered 3-D visco-elastic half space, synthetic seismograms are obtained. The calculated accelerograms due to vertical dip slip and strike slip line sources are presented.

  • PDF

A Simplified Soil-Structure Interaction Analytical Technique of Embedded Structure and Structure on Layered Soil Sites (매입구조물(埋入構造物)과 층상지반상(層狀地盤上) 구조물(構造物)에 대한 지반(地盤)-구조물(構造物) 상호(相互) 작용(作用)의 단순해석(單純解析))

  • Joe, Yang Hee;Lee, Yong Il;Kim, Jong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.45-57
    • /
    • 1987
  • The dynamic behavior of a structure by earthquake is considerably affected by the flexibility of the base soil. This phenomenon is called dynamic soil-structure interaction effect. There are two broad categories of soil-structure interaction analytical technique: direct method and substructure method. Substructure method, in contrast to direct method, has many limitations in applying to embedded structures or structures on layered soil sites, while it is relatively simple. In this paper, a simplified soil-structure interaction analytical procedure using substructure method is proposed to eliminate its original limitations. The proposed method is well applicable to embedded structures or structures on layered soil sites with as good results as FLUSH.

  • PDF