• Title/Summary/Keyword: 측위 시스템

Search Result 593, Processing Time 0.026 seconds

Indoor Location System based on TDOA between RF and Ultrasonic Signal (RF와 초음파 사이의 TDOA에 기반한 실내 측위시스템)

  • Seo, Young-Dong;Song, Moon-Kyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.611-618
    • /
    • 2009
  • Recently, an indoor location-aware technology has been focused on as a key technology for context awareness in ubiquitous computing environments. The conventional Cricket system was designed with a non-centralized architecture, which has advantages in terms of user privacy, deployment, scalability, decentralized administration, network heterogeneity, and low cost. In this paper, an indoor location system based on TDOA between RF and ultrasound signals is designed, which improves the Cricket system. A 2.4GHz frequency is employed for transmitting RF messages, which is in an ISM band. The beaconing frequency is doubled to enhance the channel utilization rate. The ultrasonic pulse duration is optimized to increase the coverage of ultrasonic signals. The function of calculating location coordinates is embedded in a listener. The location-update rate and location accuracy are also improved.

Location Determination System for Transport Path Optimization of Block Transporter (블록트랜스포터 운송경로 최적화를 위한 위치 측위 시스템)

  • Park, Jin-Gwan;Oh, Joo-Seong;Lee, Seong Ro;Jeong, Min-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.589-596
    • /
    • 2014
  • Block Transporter should be optimized transportation path, otherwise it brings about lot of logistics costs and production delays. Block Transporter location must be checked in real time for optimization of transportation path. In this paper we implement real-time location determination using mobile RFID for location of Block Transporter. Mobile RFID reader mounted on a smartphone is recognize Mobile RFID Tag attached in the Transporter. Then, Smartphone is store information of every Transporter name and load and etc. Finally, Smartphone is transmit information(Mobile RFID Tag information, Transporter information, location determination information used AP and GPS) to the server. As a result, We can optimize or modify transportation path of Block Transporter in real-time using information transmitted to the server.

Improvement of the Positioning Accuracy of a Single Frequency Receiver Using Observables of the Dual GPS Reference Stations (이중 GPS 기준국 관측정보를 이용한 단일주파수 수신기의 측위 정확도 향상)

  • Choi, Byung-Kyu;Park, Jong-Uk;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.291-298
    • /
    • 2008
  • With the growth of civil and commercial applications, the Global Navigation Satellite System(GNSS) that provides the positioning, navigation, and timing information affects to our life. In order to meet all the requirements of civilian user, new positioning technology with the accuracy of 10cm level has been applied and the positioning accuracy is getting improved. In this study, dual coverage(DAEJ, SUWN) GPS measurements were applied to improve the positioning accuracy for GPS L1 single frequency users. We processed some GPS data obtained from the distributed test sites in the wide area over Korea Peninsula. As a result, the combined solution output using dual coverage showed more improved positioning accuracy than that of single coverage.

Analysis of integrated GPS and GLONASS double difference relative positioning accuracy in the simulation environment with lots of signal blockage (신호차폐 시뮬레이션 환경에서의 통합 GPS/GLONASS 이중차분 상대측위 정확도 분석)

  • Lee, Ho-Seok;Park, Kwan-Dong;Kim, Du-Sik;Sohn, Dong-Hyo
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.429-435
    • /
    • 2012
  • Although GNSS hardware and software technologies have been steadily advanced, it is still difficult to obtain reliable positioning results in the area with lots of signal blockage. In this study, algorithms for integrated GPS and GLONASS double difference relative positioning were developed and its performance was validated via simulations of signal blockages. We assumed that signal blockages are caused by high-rise buildings to the east, west, and south directions. And then, GPS-only and integrated GPS/GLONASS positioning accuracy was analysed in terms of 2-dimensional positioning accuracies. Compared with GPS-only positioning, the positioning accuracy of integrated GPS/GLONASS improved by 0.3-13.5 meters.

Performance Analysis of IPDL Methods Using High Resolution Channel Estimation Technique for W-CDMA systems (W-CDMA 시스템에서 고해상 채널 추정을 이용한 IPDL 기법의 무선 측위 성능분석)

  • 朴雲龍;崔州平;李元澈
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.6
    • /
    • pp.10-10
    • /
    • 2002
  • This paper introduces the high-resolution channel estimation technique which are used to estimate the first arrival multipath delay component. The proposed technique yields the precise estimate of the first time arrival which is directly related to the performance of TDOA-based position location. The proposed technique utilizes the transformed auto-correlation function of received common pilot signal in frequency domain, its samples compose the hermitian Toeplitz matrix at sequel. Then the time delay components could be estimated with precision by the analysis of eigen-structure of corresponding matrix. In this paper, obeying the modified CODIT model, the performance of the PR-IPDL(Pseudo Random-Idle Period Downlink) and TA-IPDL(Time Aligned-Idle Period Downlink considered as 3GPP position location technique will be exploited systematically through the computer simulations with applying the proposed technique.

Performance Analysis of IPDL Methods Using High Resolution Channel Estimation Technique for W-CDMA systems (W-CDMA 시스템에서 고해상 채널 추정을 이용한 IPDL 기법의 무선 측위 성능분석)

  • Park, Un-Yong;Choe, Ju-Pyeong;Lee, Won-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.6
    • /
    • pp.268-276
    • /
    • 2002
  • This paper introduces the high-resolution channel estimation technique which are used to estimate the first arrival multipath delay component. The proposed technique yields the precise estimate of the first time arrival which is directly related to the performance of TDOA-based position location. The proposed technique utilizes the transformed auto-correlation function of received common pilot signal in frequency domain, its samples compose the hermitian Toeplitz matrix at sequel. Then the time delay components could be estimated with precision by the analysis of eigen-structure of corresponding matrix. In this paper, obeying the modified CODIT model, the performance of the PR-IPDL(Pseudo Random-Idle Period Downlink) and TA-IPDL(Time Aligned-Idle Period Downlink considered as 3GPP position location technique will be exploited systematically through the computer simulations with applying the proposed technique.

Indoor Wi-Fi Localization with LOS/NLOS Determination Scheme Using Dual-Band AP (이중대역 AP를 이용한 LOS/NLOS 판별 및 실내 위치 측위 기술)

  • Kim, Kangho;Lee, Suk Kyu;Jung, Jongtack;Yoo, Seungho;Kim, Hwangnam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1643-1654
    • /
    • 2015
  • With standardization of IEEE 802.11n, APs with the 2.4GHz and 5GHz dual-band capability have widely been deployed over a metropolitan area by individuals and internet service providers. Moreover, due to the increasing attentions on indoor-localization technique using Wi-Fi, the need for LOS and NLOS determination scheme is increasing to enhance accuracy of the localization. In this paper, we propose a novel LOS/NLOS determination technique by using different radio attenuation characteristics in different frequency bands and different mediums. Based on this technique, we designed a LOS/NLOS-aware indoor localization scheme. The proposed LOS/NLOS determination algorithm can be used when the distance between an user device and an AP is unknown, and the proposed localization scheme provides very accurate room-level position information. We validated the proposed scheme by implementing it on Android smart phones.

Availability Evaluation of Network DGPS Positioning for Various Facilities Management In Dense Housing Area (주택가 밀집지역에서의 각종 시설물 관리를 위한 네트워크 DGPS 측위의 가용성 평가)

  • Kim, In-Seup
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.93-99
    • /
    • 2010
  • Since the facility management for various facilities in urban area are conducted by general managers who have poor knowledge for surveying technology, it is not easy to trace the exact location of the facility in a short time with the GIS map only by themselves in the field. In order to improve it, VRS-RTK or SBAS DGPS system integrated with UMPC and PDA which is uploaded GIS field software are being used recently however lot of difficulties are still existed with the GPS positioning in urban area due to the lack of visible satellites, no reception of correction data and multipath error by the interruption of the high buildings and houses etc. Therefore, in this study, we applied with Network DGPS system which allows better reception of satellite signal and correction data even in dense housing areas with the use of GNSS receiver and CDMA mobile phone. Based on the analysis of field data, it was confirmed that standard deviations of the Network DGPS positioning are 0.3 to 0.84m with a very high positioning rate even in dense housing areas. Therefore, it was concluded that the Network DGPS system could be used widely to fast and accurate positioning for various facilities management works in dense housing areas in the future.

Development of a Vehicle Positioning Algorithm Using Reference Images (기준영상을 이용한 차량 측위 알고리즘 개발)

  • Kim, Hojun;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1131-1142
    • /
    • 2018
  • The autonomous vehicles are being developed and operated widely because of the advantages of reducing the traffic accident and saving time and cost for driving. The vehicle localization is an essential component for autonomous vehicle operation. In this paper, localization algorithm based on sensor fusion is developed for cost-effective localization using in-vehicle sensors, GNSS, an image sensor and reference images that made in advance. Information of the reference images can overcome the limitation of the low positioning accuracy that occurs when only the sensor information is used. And it also can acquire estimated result of stable position even if the car is located in the satellite signal blockage area. The particle filter is used for sensor fusion that can reflect various probability density distributions of individual sensors. For evaluating the performance of the algorithm, a data acquisition system was built and the driving data and the reference image data were acquired. Finally, we can verify that the vehicle positioning can be performed with an accuracy of about 0.7 m when the route image and the reference image information are integrated with the route path having a relatively large error by the satellite sensor.

Vision-based Food Shape Recognition and Its Positioning for Automated Production of Custom Cakes (주문형 케이크 제작 자동화를 위한 영상 기반 식품 모양 인식 및 측위)

  • Oh, Jang-Sub;Lee, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1280-1287
    • /
    • 2020
  • This paper proposes a vision-based food recognition method for automated production of custom cakes. A small camera module mounted on a food art printer recognizes objects' shape and estimates their center points through image processing. Through the perspective transformation, the top-view image is obtained from the original image taken at an oblique position. The line and circular hough transformations are applied to recognize square and circular shapes respectively. In addition, the center of gravity of each figure are accurately detected in units of pixels. The test results show that the shape recognition rate is more than 98.75% under 180 ~ 250 lux of light and the positioning error rate is less than 0.87% under 50 ~ 120 lux. These values sufficiently meet the needs of the corresponding market. In addition, the processing delay is also less than 0.5 seconds per frame, so the proposed algorithm is suitable for commercial purpose.