• Title/Summary/Keyword: 측압계수(K)

Search Result 46, Processing Time 0.022 seconds

The Numerical Analysis of Pillar Stability with Multiple, Irregular Openings (다수의 불규칙 공동을 갖는 광주의 안정성에 관한 수치해석)

  • Min, Hyung-Ki;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.139-155
    • /
    • 2004
  • A room and pillar mining method has been adopting at the Jeungsun limestone mine. To check stability of pillar with multiple and irregular openings, the size, shape and spacing of rib pillar were first designed using some empirical suggestions. The Finite Difference Method(FDM)was used to analyze the pillar stability. Twelve different cases with the variation of K(horizontal/vertical stress)values, different height and different spacing of pillar were used in this study. Finally Mohr-Coulomb criterion was adopted to calculate the safety factors. Horizontal and vertical displacement, maximum and minimum principal stresses, range of plastic zone and safety factors were calculated at each case. As a result of analysis, the size of one block is 160m long, 70m wide, 40m high with 20m wide rib pillar and 20m square column pillar. The overall recovery at this case can be estimated about 40%.

  • PDF

A Study on Design of Support for Cavern in Jointed Rock Mass Using Block Reaction Curve (블록반응곡선을 이용한 불연속 암반내 공동에 대한 지보설계에 관한 연구)

  • 이영주;이희근
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.11-21
    • /
    • 1995
  • 일반적으로 NATM공법에서 지보의 설계는 암반반응곡선의 개념을 통해 수행된다. 그러나 암반반응곡선은 암질이 좋고 과지압에 의한 문제가 심각하지 않은 지역에 적용되며, 따라서 주로 불연속면에 의해 암반의 거동이 영향을 받는 지역에서는 시공과정에 직접 적용하기가 힘들다. 본 연구에서는 암반 블록에 대한 블록반응곡선을 연구하여, 블록반응곡선상에서 지보를 설계하였다. 각각의 차분시각에서의 변위와 응력을 얻기위해서 개별요소 프로그램인 UDEC을 사용하였다. 블록은 Mohr-Coulomb 모델이며, 불연속면은 Barton-Bandis 모델이다. 블록과 불연속면의 물성은 실험실 실험을 통하여 구하였다. 블록반응곡선을 이용한 지보설계과정을 이해하기 위하여 간단한 모델분석을 실시하였다. 동일한 형상의 키블록이 공동의 천장, 측벽, 바닥에 존재할 경우, 각 블록의 안정성 판단 및 지보의 설계를 실시하였다. 또한 초기지압의 영향을 알아보기 위하여, 측압계수(K)를 달리하여 해석해보았다. 현재 건설중인 공동에 대한 안정성 판단 및 지보설계를 블록반응곡선을 이용하여 설계하였다.

  • PDF

Stability Analysis of Multiple Thermal Energy Storage Caverns Using a Coupled Thermal-Mechanical Model (열-역학적 연계해석 모델을 이용한 다중 열저장공동 안정성 분석)

  • Kim, Hyunwoo;Park, Dohyun;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.297-307
    • /
    • 2014
  • Cavern Thermal Energy Storage system stores thermal energy in caverns to recover industrial waste heat or avoid the sporadic characteristics of renewable-energy resources, and its advantages include high injection-and-extraction powers and the flexibility in selecting a storage medium. In the present study, the structural stability of rock mass pillar between these silo-type storage caverns was assessed using a coupled thermal-mechanical model in $FLAC^{3D}$. The results of numerical simulations showed that thermal stresses due to long-term storage depended on pillar width and had significant effect on the pillar stability. A sensitivity analysis of main factors indicated that the influence on the pillar stability increased in the order cavern depth < pillar width < in situ condition. It was suggested that two identical caverns should be separated by at least one diameter of the cavern and small-diameter shaft neighboring the cavern should be separated by more than half of the cavern diameter. Meanwhile, when the line of centers of two caverns was parallel to the direction of maximum horizontal principal stress, the shielding effect of the caverns could minimize an adverse effect caused by a large horizontal stress.

Characteristics of the Horizontal Stress and the Possibility of Stress Induced Brittle Failure in Chuncheon-Yanggu Mountainous Region by the In-situ Stress Measurements (현장 측정에 의한 춘천-양구 산악지역 내 수평응력 분포와 취성파괴 가능성에 관한 연구)

  • Bae Seongho;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.157-167
    • /
    • 2005
  • Current initial rock stress state is one of the key factors required to evaluate the stability and failure around an excavated opening and its importance increases as the construction depth become deeper and the scale of the rock structure become larger. In this paper, the study was performed to evaluate the characteristics of the regional stress state at Chuncheon-Yanggu mountainous region, the East-North part of Kyeonggi Massif. Forty nine field stress measurements in 9 boreholes were conducted at the depth from 20 m to 290 m by hydraulic fracturing method. The fracturing tracing works were carried out by acoustic televiewer scanning. The study results revealed that the different intial rock stress states presented at different formation rock type and the excessive horizontal stress state with stress ratio(K) close to 3.0 was measured at the depth of 200 m and deeper in the intrusive unite body of the study area. The results from the investigation of excessive horizontal stress and its effect on failure mode showed that there exist several points where the localized excessive horizontal stresses are big enough to potentially induce brittle failures around the future openings greater than 100 m in depth within the granite body of the study area.

In-situ Rock Stress Measurement at the Water Tunnel Sites in the OO Oil Storage Facility with Hydraulic Fracturing Method (수압파쇄법을 이용한 OO 원유비축시설 내 수벽 터널에서의 초기응력 측정)

  • Bae, Seong-Ho;Kim, Jae-Min;Kim, Jang-Soon;Lee, Young-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.80-89
    • /
    • 2008
  • The influence of in-situ rock stress on the stability of an underground rock structure increases as the construction depth become deeper and the scale of a rock structure become larger. In general, hydraulic fracturing stress measurement has been performed in the surface boreholes of the target area at the design stage of an underground structure. However, for some areas where the high horizontal stresses were observed or where the overstressed conditions caused by topographical and geological factors are expected, it is desirable to conduct additional in-situ stress measurement in the underground construction site to obtain more detailed stress information for ensuring the stability of a rock structure and the propriety of current design. The study area was a construction site for the additional underground oil storage facility located in the south-east part of OO city, Jeollanam-do. Previous detailed site investigation prior to the design of underground structures revealed that the excessive horizontal stress field with the horizontal stress ratio(K) greater than 3.0 was observed in the construction area. In this study, a total of 13 hydraulic fracturing stress measurements was conducted in two boreholes drill from the two water tunnel sites in the study area. The investigation zone was from 180 m to 300 m in depth from the surface and all of the fracture tracing works were carried out by acoustic televiewer scanning. For some testing intervals at more than 200 m ind depth from surface, the high horizontal stress components the horizontal stress ratio(K) greater than 2.50 were observed. And the overall investigation results showed a good agreement with the previously performed test.

Behavior of the Ground in Rectangularly Crossed Area due to Tunnel Excavation under the Existing Tunnel (II) (기존터널에 근접한 직각교차 하부터널의 굴착에 따른 교차부지반의 거동 (II))

  • Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.133-141
    • /
    • 2005
  • The behavior of the ground in crossed zone due to the excavation of new lower tunnel rectangularly crossed to that was studied by model tests and numerical analysis in shallow cover. Results of the model tests show that earth pressure of the ground in crossed zone were redistributed due to the longitudinal arching effect by the excavation of lower tunnel. By the numerical analysis, minimum principal stress in crown of single tunnel has more decrease than parallel tunnel or crossed tunnel. Vertical stress at rectangularly crossed tunnel decrease more than single tunnel by stress shadow.

  • PDF

A Study on the Development of Measuring Equipment for Coefficient of Earth Pressure at Rest (정지토압계수의 측정장치 개발에 관한 연구)

  • Song, Mu-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.159-167
    • /
    • 1999
  • For exisiting $K_0$-oedometer, the lateral wall of the ring is cut thinly to make space and by filling the space with space with water or mercuty to keep the balance to the lateral pressure of a specimen, the pressure of the fluid is checked for the pressure of the specimen. But the devices to keep the balance to the lateral pressure of a specimen are complicated, difficult to manufacture and expensive. As newly developed $K_0$-oedometer is equipped with the load cell which can resist higher pressute than the lateral pressure of the specimen, there is nearly no deformation due to the lateral pressure of the specimen. And the measuting is cheap and easy as there are fewer accessories.

  • PDF

Evaluation of rock load based on critical shear strain concept on tunnels (한계전단변형률 개념을 이용한 터널의 지반이완하중 평가)

  • Kim, Jung-Joo;Lee, Jae-Kook;Kim, Jong-Uk;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.637-652
    • /
    • 2013
  • After studying the characteristics of three different evaluation methods of rock load; namely theoretical method, empirical method and numerical method, there were too many limitations for them to be applied on tunnels. Therefore, in this research paper, the method based on numerical analysis is selected to use as this method is the most reasonable one since it considers all parameters that are necessary for rock load estimations, and it also considers the interaction between ground and tunnel support. The critical shear strain concept formulated by Sakurai (1981) was used in order to measure exact rock load values based on numerical analysis. Evaluation on a Level 1 rock load height, which is depicted by the stable region in the graph shows that rock load is not affecting between ground grade 1~3, and it was evaluated that the fourth and fifth grades show less values of rock load height which led to the conclusion of a more economical design of concrete lining.

A stability study of deep and double-deck tunnels considering shape and reinforcing method of an enlarged section by using numerical analyses (수치해석을 이용한 대심도 복층터널의 확폭단면 형상 및 보강방법에 대한 안정성 연구)

  • You, Kwang-Ho;Jin, Su-Hyun;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.41-56
    • /
    • 2017
  • Recently, the necessity of deep and double-deck tunnels has been grown day by day due to the increase of traffic volume at metropolitans and thus the study on the divergence of those tunnels becomes required. Therefore sensitivity analyses were conducted with FLAC 2D program by selecting ground condition, coefficient of lateral pressure, support pattern, and depth of rock cover as parameters. Ultimately, this study is to find the optimal shape and support method of a diverged section. As the results of this study, it turned out that the box type gave higher stability of the section than arch type unlike the general thought. It can be explained that the arch type has about 30% bigger excavation area than the box type. When the ground conditions are poor, steel pipe grouting reinforcement gives higher stability than rockbolt reinforcement, but its thickness and range do not give a great influence on the stability of the enlarged section.

Three Dimensional In-situ Stress Distribution in the Southern Korean Peninsula and Its Application in Tunnel Analysis (한반도 3차원 지중응력의 분포와 이를 고려한 터널해석에 대한 연구)

  • 김동갑;박종관
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.65-74
    • /
    • 2002
  • The measurement of in-situ stress is essential to estimate the ground displacement and the stress distribution of a tunnel and an underground structure. In this study, the in-situ stress distribution of the Southern Korean peninsula was re-evaluated by the new 380 in-situ data which were determined by overcoring and hydrofracturing methods, and the three-din erosional numerical analysis of tunnelling was performed. The results of in-situ stress distribution show that the distribution of horizontal stress tends to be more irregular in metamorphosed(gneiss) and granite areas than in sedimentary and volcanic areas. The ratio of horizontal to vertical stresses(K-value) in volcanic area is less than 1 below the depth of 150m. The direction and magnitude of three dimensional in-situ stresses were shown simultaneously in a figure for the first time in Korea. The three-dimensional numerical analysis of tunnelling indicates that the orientation and magnitude of displacement around a tunnel are controlled mainly by the difference between the maximum and minimum horizontal stresses.