• Title/Summary/Keyword: 측면보조전계

Search Result 4, Processing Time 0.019 seconds

Superconducting Thick Film by Lateral Field Assisted EPD (측면보조전계 인가 형 전기영동전착 초전도후막)

  • 소대화;박성범;전용우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.378-381
    • /
    • 2003
  • 제작 장치와 공정이 간단하고, 두께제어 및 다양한 종류와 형태의 후막제작이 가능하며, 경제적 효율성과 기술적 장점을 가지고 있는 전기영동전착방식으로 산화물계 고온 초전도 후막을 제작하였다. 전착특성을 개선하기 위하여 측면보조전계 인가 방식을 설계, 적용하였다. 측면보조전계 인가 방식의 전기영동전착법을 적용함으로써, 기존의 단독 전착전계 인가방식에 비하여 전기영동전착 후막의 표면 균일성을 확보할 수 있음으로 임계전류 밀도를 향상시킬 수 있었다. 그러므로 측면보조전계 인가방식은 전기전자, 의료, 기계 분야의 핵심 산업 및 첨단 소재의 응용분야에 이르기까지 매우 폭넓은 범위에서 효과적으로 적용될 수 있을 것으로 사료된다. 특히 후막제작이 어려운 세라믹계열에의 적용이 가능하며, CRT 튜브의 전자총 히터코일과 같은 특수 제작조건을 비롯하여 균일하고 치밀한 막의 제작이 요구되는 기술공정상의 목적이 유사한 경우의 여러 가지의 응용 대상에도 적용함으로써, 그 특성과 성능을 향상시킬 수 있을 것으로 판단된다.

  • PDF

Superconducting Thick Film by Lateral Field Assisted EPD (측면보조전계 인가 전기영동전착 초전도후막)

  • 전용우;소대화;조용준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.679-685
    • /
    • 2004
  • Although the electrophoretic deposition method has the advantage of simple processing procedure, less fabrication facilities, and easier control for deposition thickness and wire length, providing economical and technical merits, it also has the disadvantages of cracking and porosity phenomena, requiring an improved processing method for higher particle density and constant particle orientation. we have developed an optimization method to increase the particle density and to unify its orientation, and have performed a study to overcome the cracking and porosity problems in the fabricated superconductor. In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternate voltage vertically has been developed for the first time and applied to the electrophoretic deposition process. The applied alternate electric field caused a force to be exerted on each YBCO particle and resulted in a rotation of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. We name this process as the shaky-aligned electrophoretic deposition method. For commercial utilization and efficiency, in this dissertation, alternating voltage of 60 Hz and 25 ∼ 120 V/cm was proposed to apply it as a subsidiary source for shaky-flow deposition so that the fabricated thin film showed uniform surface morphology with less voids and cracks and Tc,zero of 90 K and the critical current density of 3419 A/$cm^2$.

Fabrication of YBCO Superconducting Thick Film by Use of Lateral Shaky Field Assisted EPD Method (측면진동보조전계 전기영동 전착방식을 적용한 YBCO 초전도 후막의 제작)

  • 소대화;전용우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1041-1046
    • /
    • 2003
  • In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternating field vertically to the EPD field has been developed for the first time and applied to the electrophoretic deposition process. The applied alternating electric field, so called Shaky Alternating Assisted Field, caused a force to be exerted on each YBCO particle and resulted in a shaking of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. The usual commercial electrical power was used for the vertically applied alternating voltage and the induced electric field was 25-120 V/cm at 60Hz. The thick film fabricated by the method developed in this paper showed better surface uniformity without crack and porosity and improved film characteristics such as critical temperature (Tc,zero = 90 K) and critical current density (2354 A/$\textrm{cm}^2$), Therefore, it is expected that the shaky-aligned electrophoretic deposition method can be used to fabricate superconductor films through a simpler process and at less expense.

Electrophoretic Deposition Technique by Vertical Lateral Assisted Field (측면수직보조전계에 의한 전기영동전착 기술)

  • Soh, Dae-Wha;Jeon, Yong-Woo;Park, Jeung-Cheul;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.82-85
    • /
    • 2003
  • This dissertation describes an optimization method for fabricating thick films with superconducting YBCO powders by electrophoresis technique. The lateral alternating applied voltage caused to shake the superconducting powder vertically to the deposition field during the process of the oriented deposition so that it was deposited along the c-axis on the silver tape with shaky-aligned EPD. As the result, the optimized thin film fabrication method was obtained to get more dense and uniform surface morphology as well as the improved critical current density. For commercial utilization and efficiency, in this dissertation, alternating voltage of 25-120 V/cm in frequency of 60Hz was proposed to apply it as a subsidiary source for shaky-flow deposition so that the fabricated thin film showed uniform surface morphology with less voids and cracks and $T_{c.zero}$ of 90 K and the critical current density of $3419A/cm^2$.

  • PDF