• Title/Summary/Keyword: 측량 시스템

Search Result 927, Processing Time 0.03 seconds

Utilizing Airborne LiDAR Data for Building Extraction and Superstructure Analysis for Modeling (항공 LiDAR 데이터를 이용한 건물추출과 상부구조물 특성분석 및 모델링)

  • Jung, Hyung-Sup;Lim, Sae-Bom;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.227-239
    • /
    • 2008
  • Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.

Ship Positioning Using Multi-Sensory Data for a UAV Based Marine Surveillance (무인항공기 기반 해양 감시를 위한 멀티센서 데이터를 활용한 선박 위치 결정)

  • Ryu, Hyoungseok;Klimkowska, Anna Maria;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.393-406
    • /
    • 2018
  • Every year in the ocean, various accidents occur frequently and illegal fishing is rampant. Moreover, their size and frequency are also increasing. In order to reduce losses of life or property caused by these, it is necessary to have a means to perform remote monitoring quickly. As an effective platform of such monitoring means, an Unmanned Aerial Vehicle (UAV) is receiving the spotlight. In these situations where marine accidents or illegal fishing occur, main targets of monitoring are ships. In this study, we propose a UAV based ship monitoring system and suggest a method of determining ship positions using UAV multi-sensory data. In the proposed method, firstly, the position and attitude of individual images are determined by using the pre-performed system calibration results and GPS/INS data obtained at the time when images were acquired. In addition, after the ship being detected automatically or semi-automatically from the individual images, the absolute coordinates of the detected ships are determined. The proposed method was applied to actual data measured at 200 m, 350 m, and 500 m altitude, the ship position can be determined with accuracy of 4.068 m, 8.916 m, and 13.734 m, respectively. According to the minimum standard of a hydrographical survey, the ship positioning results of 200 m and 350 m data satisfy grade S and the results of 500 m data do grade 1a, where the accuracy is required for positioning the coastline and topography less significant to navigation order. Therefore, it is expected that the proposed method can be effectively used for various purposes of marine monitoring or surveying.

회야강 하구 주변의 지형변화(진하 해수욕장을 중심으로)

  • Park, Sang-Gil;Choe, Seon-Ho;Cheon, Su-Gyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1990.07a
    • /
    • pp.221-221
    • /
    • 1990
  • 진하 해수욕장은 부산에서 약 40km 정도 동해안도로를 거슬러 올라가면 경남 울주군 진하리에 위치한 조그마한 자연해변의 해수욕장이다. 해수욕장의 동쪽에서는 회야천이 흘러 들어오고, 이 하천의 3km 상류지점에는 댐을 축조하여 온산공단 및 주변지역의 생활용수를 공급하고 있다. 어울려서, 쾌적한 위락시설 단지로서는 최적이라고 생각된다. 현재 이 해안은 매년 침식이 진행되면서 해수욕을 할 수 있는 해변 공간이 줄어들고 있는 실정이다. 따라서 이 해안을 보전하기 위해서 관청과 주민들은 많은 심혈을 기울이고 있는 실정이다. 본 연구의 조사단은 1987년부터 해마다 수침측량을 실시하여 해수욕장의 지형변화를 조사하고 있다. 특히 이 해수욕장의 사빈은 몇년전 부터, 침식형의 사빈으로 변화되어 매년 많은 모래가 유실되는 현상이 발생하고 있어, 관청 및 주민들의 관심을 집중시키고 있다. 따라서, 금년에도 울주군청에서는 회야강 하구에 생성된 사주를 준설하여 준설된 모래를 해수욕장에 인공적으로 투입하여 양빈을 실시하고 있는 실정이다. 이 작업은 하구폐색의 문제를 해결할 뿐만 아니라 선박의 운행에도 큰 도움을 주고 있다. 이러한 작업은 기초해안 자료를 충분히 검토된 상태에서 실시되어야 한다. 그러치 못할 경우는 인위적으로 투입된 모래는 파랑에 의해서 다시 심해방향이나, 해안류를 따라서 다시 하구로 밀려오는 현상이 일어 날 것이다. 본 연구는 회야강 하구의 지형변화와 진하 해수욕장의 사빈의 변화를 정확히 파악하고져 단기간 동안 심천 측량을 실시한 결과를 이용하여 기존이론으로 해석한 결과를 제시함을 목적으로 한다.고 동시에 광 스트레스에 대한 저해를 감소시키는 것으로 보인다. 있다. 청주권의 무심천도 계획상은 대청댐의 물을 공급 받을수도 있도록 되어 있으나 현실상으로 상수도 원수로서의 공급마저도 매년 심한 원수 수질 문제(5-6월, 10월경의 취수장 부근의 부영양화 현상으로 인한 악취와 물 맛의 문제)를 1984년부터 겪고 있다. 이와 같이 도시권 하천의 수자원은 자연적, 인위적, 경제적, 법적, 제도적 여러 제한 요소로서 특성을 가지고 있으며 이는 날로 심해 가고 있는 실정이다. 그러므로 최적 물관리 시스템의 개발이 새로이 시작하는 수자원 개발 사업에서는 계획 단계에서부터 절실히 요구되는 바이며 기존 시설물의 관리 운영은 과감히 그 운영 관리 기준을 보완 재 정비하여야 할 것이다. 지금까지 대부분의 수자원 종합 개발 계획이 홍수방이나 용수 공급 및 수력 개발 등에 주력하여 왔으나 이제는 보다 더 수자원의 환경 보전적 차원과 도시의 안정적 발달을 위한 지역 및 권역 계획과 연계지워져서 양적인 안정 공급과 더불어 질적인 향상과 연계지워서 경제-사회적 요구에 부응할 수 있도록 도시권의 수자원을 최적 관리할 수 있는 방안을 강구하여야 할 것이다. 이는 각 도시 하천의 수자원의 정량적·정성적인 특성 및 제한 요소를 충분히 감안하여 수요-공급 개념에 의하여 과감히 기존 시설(예: 팔당댐의 운영, 대청댐의 운영 등)의 관리 운영 체계를 개선하여 나가야 할 것이며, 수질 보전적-환경 보전 차원에서 저수관리 체계를 확고히 할 수 있는 방안을 강구하여야 할 것이다.펄스주입법에 의해 증착된 박박은 강유전성 이력을 나타내었다.지역

  • PDF

Development of relational river data model based on river network for multi-dimensional river information system (다차원 하천정보체계 구축을 위한 하천네트워크 기반 관계형 하천 데이터 모델 개발)

  • Choi, Seungsoo;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.335-346
    • /
    • 2018
  • A vast amount of riverine spatial dataset have recently become available, which include hydrodynamic and morphological survey data by advanced instrumentations such as ADCP (Acoustic Doppler Current Profiler), transect measurements obtained through building various river basic plans, riverine environmental and ecological data, optical images using UAVs, river facilities like multi-purposed weir and hydrophilic sectors. In this regard, a standardized data model has been subsequently required in order to efficiently store, manage, and share riverine spatial dataset. Given that riverine spatial dataset such as river facility, transect measurement, time-varying observed data should be synthetically managed along specified river network, conventional data model showed a tendency to maintain them individually in a form of separate layer corresponding to each theme, which can miss their spatial relationship, thereby resulting in inefficiency to derive synthetic information. Moreover, the data model had to be significantly modified to ingest newly produced data and hampered efficient searches for specific conditions. To avoid such drawbacks for layer-based data model, this research proposed a relational data model in conjunction with river network which could be a backbone to relate additional spatial dataset such as flowline, river facility, transect measurement and surveyed dataset. The new data model contains flexibility to minimize changes of its structure when it deals with any multi-dimensional river data, and assigned reach code for multiple river segments delineated from a river. To realize the newly developed data model, Seom river was applied, where geographic informations related with national and local rivers are available.

Accuracy Evaluation of Terrain Correction of High Resolution SAR Imagery with the Quality of DEM (DEM 품질에 따른 고해상도 SAR 영상의 지형 보정 정확도 평가)

  • Lee, Kyung Yup;Byun, Young Gi;Kim, Youn Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_1
    • /
    • pp.519-528
    • /
    • 2012
  • It was pointed out that the terrain distortion of SAR image is even worse than that of optical image although SAR imagery has the advantages of being independent of solar illumination and weather conditions. It is thus necessary to correct terrain distortion in SAR image for various application areas to integrate SAR and optical image information. There has to be a clear evaluation of terrain correction of high resolution SAR image according to the quality of DEM because the DEM of study site is generally used in the process of terrain correction. To achieve this issue, this paper compared the effects of quality of Digital Elevation Model(DEM) in the process of terrain correction of high resolution SAR images, using the DEM produced from 1:5000 topographic contour maps, LiDAR DEM, ASTER GDEM, SRTM DEM. We used TerraSAR-X and Cosmo-SkyMed, as the test data set, which are constructed on the same X-band SAR system as KOMPSAT-5. In order to evaluate quantitatively the correction results, we conducted comparative evaluation with the KOMPSAT-2 ortho image of the same region. The evaluation results showed that the DEM produced from 1:5000 topographic contour maps achieved successful results in the terrain correction of SAR image compared with the other DEM data, and the widely used SRTM DEM data in various applications was not suitable for the terrain correction of high resolution SAR images.

A Study on 3D Visualization Strategy of Cadastral Spatial Information (지적공간정보의 3차원 가시화 방안 연구)

  • Kim, Jae In;Kim, Tae Jung;Bae, Sang Keun;Jeong, Dong Hoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.spc4_2
    • /
    • pp.413-420
    • /
    • 2014
  • Cadastral spatial information closely related to ownership of people is potentially very valuable information. As 3D cadastre has been actively discussed to reflect realistic living territory and legal relationship in recent years, it is highly expected to be created added value before long using that information. However, in aspect of visualization that performs an important function for decision making by facilitating intuitive thinking about spatial information, systematic solution has not been suggested to visualize the cadastral spatial information on a map with existing 3D spatial information. For that reason, in this paper, visualization method was proposed to integrate the cadastral spatial information with the existing information effectively. Requirements for 3D cadastral spatial information system were drawn based on literature review, and then specific visualization method was established by constructing user scenarios. Research results of this paper are highly expected to be applied to the integration work with the existing 3D information on a spatial information open platform.

k-Interest Places Search Algorithm for Location Search Map Service (위치 검색 지도 서비스를 위한 k관심지역 검색 기법)

  • Cho, Sunghwan;Lee, Gyoungju;Yu, Kiyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.259-267
    • /
    • 2013
  • GIS-based web map service is all the more accessible to the public. Among others, location query services are most frequently utilized, which are currently restricted to only one keyword search. Although there increases the demand for the service for querying multiple keywords corresponding to sequential activities(banking, having lunch, watching movie, and other activities) in various locations POI, such service is yet to be provided. The objective of the paper is to develop the k-IPS algorithm for quickly and accurately querying multiple POIs that internet users input and locating the search outcomes on a web map. The algorithm is developed by utilizing hierarchical tree structure of $R^*$-tree indexing technique to produce overlapped geometric regions. By using recursive $R^*$-tree index based spatial join process, the performance of the current spatial join operation was improved. The performance of the algorithm is tested by applying 2, 3, and 4 multiple POIs for spatial query selected from 159 keyword set. About 90% of the test outcomes are produced within 0.1 second. The algorithm proposed in this paper is expected to be utilized for providing a variety of location-based query services, of which demand increases to conveniently support for citizens' daily activities.

Application of Deep Learning Method for Real-Time Traffic Analysis using UAV (UAV를 활용한 실시간 교통량 분석을 위한 딥러닝 기법의 적용)

  • Park, Honglyun;Byun, Sunghoon;Lee, Hansung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.353-361
    • /
    • 2020
  • Due to the rapid urbanization, various traffic problems such as traffic jams during commute and regular traffic jams are occurring. In order to solve these traffic problems, it is necessary to quickly and accurately estimate and analyze traffic volume. ITS (Intelligent Transportation System) is a system that performs optimal traffic management by utilizing the latest ICT (Information and Communications Technology) technologies, and research has been conducted to analyze fast and accurate traffic volume through various techniques. In this study, we proposed a deep learning-based vehicle detection method using UAV (Unmanned Aerial Vehicle) video for real-time traffic analysis with high accuracy. The UAV was used to photograph orthogonal videos necessary for training and verification at intersections where various vehicles pass and trained vehicles by classifying them into sedan, truck, and bus. The experiment on UAV dataset was carried out using YOLOv3 (You Only Look Once V3), a deep learning-based object detection technique, and the experiments achieved the overall object detection rate of 90.21%, precision of 95.10% and the recall of 85.79%.

Rate of Shoreline Changes for Barrier Islands in Nakdong Estuary (낙동강 하구역 울타리 섬의 해안선 변화율)

  • Kim, Baeck-Oon;Khim, Boo-Keun;Lee, Sang-Ryong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.361-374
    • /
    • 2007
  • This study presents long-term shoreline changes of barrier islands in Nakdong Estuary using aerial photographs. Digital photogrammetry is used for constructing mosaic aerial photographs, which yield six sets of shoreline data ranging from 1975 to 2001. Three kinds of rate of shoreline changes such as EPR (End Point Rate), JKR(Jackknife Rate) and LRR (Linear Regression Rate) are computed by a GIS-based Digital Shoreline Analysis Systems. There have been remarkable changes both in Sinja Island and Doyodeung. Western part of Sinja Island advanced seaward, whereas eastern part retreated landward, giving appearance that the island rotated counterclockwise. Rate of shoreline changes at both ends reach 20 m/yr. Doyodeung occurred newly in front of Baekhapdeung in 1993, resulting in shoreline advance in a rate of 40 m/yr. Rate of shoreline changes differ both within and between barrier islands and have a tendency to increase eastward. To understand this spatial variability of rate of shoreline changes, it is suggested to make a detailed investigation into the impact of coastal development on hydrodynamic and sedimentary processes.

Georeferencing of Indoor Omni-Directional Images Acquired by a Rotating Line Camera (회전식 라인 카메라로 획득한 실내 전방위 영상의 지오레퍼런싱)

  • Oh, So-Jung;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.211-221
    • /
    • 2012
  • To utilize omni-directional images acquired by a rotating line camera for indoor spatial information services, we should register precisely the images with respect to an indoor coordinate system. In this study, we thus develop a georeferencing method to estimate the exterior orientation parameters of an omni-directional image - the position and attitude of the camera at the acquisition time. First, we derive the collinearity equations for the omni-directional image by geometrically modeling the rotating line camera. We then estimate the exterior orientation parameters using the collinearity equations with indoor control points. The experimental results from the application to real data indicate that the exterior orientation parameters is estimated with the precision of 1.4 mm and $0.05^{\circ}$ for the position and attitude, respectively. The residuals are within 3 and 10 pixels in horizontal and vertical directions, respectively. Particularly, the residuals in the vertical direction retain systematic errors mainly due to the lens distortion, which should be eliminated through a camera calibration process. Using omni-directional images georeferenced precisely with the proposed method, we can generate high resolution indoor 3D models and sophisticated augmented reality services based on the models.