• Title/Summary/Keyword: 충진재

Search Result 257, Processing Time 0.02 seconds

Clay Renaissance (클레이 르네상스)

  • Lee, Seok-Hoon
    • Mineral and Industry
    • /
    • v.29
    • /
    • pp.1-17
    • /
    • 2016
  • 점토광물은 자연 산출되는 광물로써 양이 풍부하고 가격이 저렴하여 여러 가지 산업자원으로써 오래전부터 다양하게 활용되어 왔다. 전통적인 주요 활용분야로는 제지 및 코팅 산업의 충진제, 내화재, 세라믹, 유리섬유, 시멘트 등에 90% 이상이 사용되어왔다. 최근에야 고무, 플라스틱 및 페인트의 물성 강화용 충진제로, 넓은 표면적을 활용한 촉매제로 일부 사용되고 있지만 대부분 판상용 점토광물을 대상으로 하고 있다. 고령토가 국내 생산 주요 품목에 들어가지만 그 비중은 2014년 기준 1.9%로 낮으며, 그나마 자급율도 77% 수준이라 수입에 의존하고 있다. 생산되는 고령토의 양이 매년 감소하고 있는 추세이며, 2014년 기준 고품질인 Wa와 Wb의 생산량이 각각 600 톤과 227 톤으로 미미한 수준이며 P급이 4.1만 톤 수준이라 부가가치가 매우 낮은 상품 중의 하나로 보인다. 다행히 우리나라에서 생산되는 고령토의 많은 부분이 할로이사이트 계열 고령토이고, 할로이사이트의 독특한 나노튜브 형태는 신소재 개발과 더불어 부가가치가 높은 새로운 활용분야를 개척하기 아주 적절한 광물이어서 그 특성과 산업적 활용 특성을 중심으로 최신 연구동향과 활용분야를 소개하고자 한다.

  • PDF

Sintering, Crystallization and Microwave Dielectric properties of a Ceramic Particle Incorporated Glass Powder (세라믹 입자가 혼합된 유리분말의 소결, 결정화 및 고주파 유전특성)

  • 김선영;이경호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.59-63
    • /
    • 2002
  • Zinc-Magnesium borosilicate 유리에 CaF$_2$입자를 충진재로 첨가하여 혼합체의 소결거동, 결정화 거동 및 최종 소결체의 마이크로파 유전특성을 측정하였다. CaF$_2$첨가는 유리의 점도를 감소 시켜 결정화 및 수축개시온도를 감소시켰다. 이러한 CaF$_2$의 최대 첨가량은 주어진 유리조성에 있어서 15 vol. % 이었다. 이러한 소결성 및 결정화 개시온도의 변화는 모 유리와 CaF$_2$의 반응에 의한 결과로 보여지며 이 반응은 결정상의 변화나 이차상의 형성에는 영향을 미치지 않았다. 따라서 유전율 6.1에 품질계수가 40000GHz 인 CaF$_2$입자를 15 vol.% 첨가시 유전상수는 7.1에서 5.6로 품질계수는 2200에서 5000GHz로 유전특성이 향상되었고 소결온도는 75$0^{\circ}C$이었다.

  • PDF

Effect on the Residual Stress of Cure Profiles, Fillers and Mold Constraints in an Epoxy System

  • Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.1-5
    • /
    • 2009
  • A dilatometer was used to investigate the effect of cure conditions, mold types and the presence of filler in an epoxy system. These studies showed shrinkage in the cured epoxy when heating it through the glass transition temperature region. The magnitude of the shrinkage, related to stress build up in the epoxy during curing, was influenced by the processing conditions, filler presence and the nature of the mold used to contain the resin. Cure and cyclic cure at a lower temperature, prior to a post cure, decreased the magnitude of observed shrinkage. Cure shrinkage decreased with the number of cyclic cures. Post cured samples outside the mold led to less shrinkage compared with samples in the mold. Sample cured in a silicon mold represented less shrinkage than sample cured in an aluminum mold. Sample containing kaolin filler showed less shrinkage than unfilled sample.

Experimental Study on the Biofiltration of Toluene Gas (기상 톨루엔의 생물학적 여과에 관한 실험적 연구)

  • 홍성도;명성운;최석호;김인호;이현재;구본탁
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.469-473
    • /
    • 2000
  • We studied the removal of toluene vapors in a lab-scale biofiter. Biofiltration was performed in a column fed in a downflow manner with contaminated air at ambient conditions. The column was packed with a mixture of peat and calstone(5:3 vol. Ratio), which was inoculated with microbes of selected stains(Pseudomonas putida type A). The microorganisms were immobilized on the filter media and biofilms were formed. The fiofilter was operated at various inlet toluene concentrations for days, and treated up to a maximum elimination capacity of $20 g/m^3hr$ at an inlet load of $30 g/m^3hr$, which corresponds to removal efficiencies in the range 20∼90% and a gas retention time of 1 to 2 min. The pressure drop was almost negligible over the biofilter columns, amounting to only $1.062 cmH_2O/m$ and appreciably smaller than other studies. The effects of operating conditions such as flow rate, inlet toluene concentration and moisture content on the performance of the biofilter were sequentially investigated.

  • PDF

Experimental Study on Enhancing Adhesion-Reactive Acrylic Compounds for Pore Filling in Additive Manufactured Metal Lattice Structures (금속 적층 제조 격자 구조체의 공극 충진용 부착력 증진 반응성 아크릴 화합물에 대한 실험적 연구)

  • Park, Kwang-Min;Park, Myung-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.143-149
    • /
    • 2020
  • The purpose of this study is to manufacture a variable density - hybrid lattice structure control by filling the pore of the metal addictive manufactured lattice structure with lightweight reactive acrylic compounds(RAC). To apply the variable density - hybrid lattice structure to the construction industry, the enhancing adhesion - reactive acrylic compounds(EA-RAC) which increased the adhesion strength was manufactured by adding ordinary portland cement to the RAC. Finally, the EA-RAC was filled into the lattice structure to test the specific density, water absorption, and adhesion strength of the variable density - hybrid lattice structure. The results were obtained with density controllable, water absorption less than 1.0%, and 1-day bonding strength of 1.78 MPa to 1.98 MPa.

A Feasibility Study on GMC (Geo-Multicell-Composite) of the Leachate Collection System in Landfill (폐기물 매립시설의 배수층 및 보호층으로서의 Geo-Multicell-Composite(GMC)의 적합성에 관한 연구)

  • Jung, Sung-Hoon;Oh, Seungjin;Oh, Minah;Kim, Joonha;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.67-76
    • /
    • 2013
  • Landfill require special care due to the dangers of nearby surface water and underground water pollution caused by leakage of leachate. The leachate does not leak due to the installation of the geomembrane but sharp wastes or landfill equipment can damage the geomembrane and therefore a means of protecting the geomembrane is required. In Korea, in accordance with the waste control act being modified in 1999, protecting the geosynthetics liner on top of the slope of landfill and installing a drainage layer to fluently drain leachate became mandatory, and technologies are being researched to both protect the geomembrane and quickly drain leachate simultaneously. Therefore, this research has its purpose in studying the drainage functions of leachate and protection functions of the geomembrane in order to examine the application possibilities of Geo-Multicell-Composite (GMC) as a Leachate Collection Removal and Protection System (LCRPs) at the slope on top of the geomembrane of landfill by observing methods of inserting filler with high-quality water permeability at the drainage net. GMC's horizontal permeability coefficient is $8.0{\times}10^{-4}m^2/s$ to legal standards satisfeid. Also crash gravel used as filler respected by vertical permeability is 5.0 cm/s, embroidering puncture strength 140.2 kgf. A result of storm drain using artificial rain in GMC model facility, maxinum flow rate of 1,120 L/hr even spray without surface runoff was about 92~97% penetration. Further study, instead of crash gravel used as a filler, such as using recycled aggregate utilization increases and the resulting construction cost is expected to savings.

Effect of GAC Packing Mass in Hybrid Water Treatment Process of PVdF Nanofibers Spiral Wound Microfiltration and Granular Activated Carbon (PVdF 나노섬유 나권형 정밀여과와 입상 활성탄의 혼성 수처리에서 활성탄 충진량의 영향)

  • Kyung, Kyu Myung;Park, Jin Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.68-76
    • /
    • 2017
  • Flat membrane with $0.4{\mu}m$ pore size was prepared with PVdF (polyvinylidene fluoride) nanofiber, which has the advantages such as excellent strength, chemical resistance, non-toxicity, and incombustibility. The spiral wound module was manufactured with the flat membrane and a woven paper. Hybrid water treatment process was composed of the PVdF nanofibers spiral wound microfiltration and granular activated carbon (GAC) adsorption column. Effect of GAC packing mass was investigated by comparing the case of recycling or discharging the treated water using the synthetic solution of kaolin and humic acid. After each filtration experiment, water back-washing was performed, and recovery rate and filtration resistances were calculated. Also, effect of GAC adsorption was compared by measuring turbidity and $UV_{254}$ absorbance. As a result, there was no effect of GAC packing mass on turbidity treatment rate; however, the treatment rate of $UV_{254}$ absorbance was 0.7~3.6% for recycling the treated water, and increased to 3.2-5.7% for discharging the treated water. In the case of recycling the treated water, reversible filtration resistance ($R_r$) and irreversible filtration resistance ($R_{ir}$) trended to decrease as increasing GAC packing mass; however, total fitration resistance ($R_t$) was almost constant, and recovery rate of water back-washing trended to increase a little.

Microwave Absorbing Properties of Iron Particles-Rubber Composites in Mobile Telecommunication Frequency Band (이동통신주파수 대역에서 순철 분말-고무 복합체 Sheet의 전파흡수특성)

  • Kim, Sun-Tae;Kim, Sant-Keun;Kim, Sung-Soo;Yoon, Yeo-Choon;Lee, Kyung-Sub;Choi, Kwang-Bo
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.131-137
    • /
    • 2004
  • For the aim of thin electromagnetic wave absorbers used in mobile telecommunication frequency band (0.8-2.0㎓), we investigate high-frequency magnetic, dielectric and microwave absorbing properties of iron particles dispersed in rubber matrix in this study. The major experimental variables are particle shape (sphere and flake) and initial particle size (in the range 5-70 $\mu\textrm{m}$) of iron powders. High value of magnetic permeability and dielectric permittivity can be obtained in the composites containing thin plate-shape (flake) iron particles (of which thickness is less than skin depth in ㎓frequency), which can be produced by mechanical forging of spherical iron powders using an attrition mill. This result is attributed to the reduction of eddy current loss (increase of permeability) and the increase of space charge polarization (increase of permeability). The optimum initial particle size is found to be about 10 $\mu\textrm{m}$ for the attainment of the material parameters (particularly, real part of complex permeability) satisfying the wave impedance matching. With the iron powders controlled in size and shape as absorbent fillers in rubber matrix, the thickness can be reduced to about 0.7mm with respect to -5㏈ reflection loss (70% power absorption) in mobile telecommunication frequency band.

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

Conductive Performance of Mortar Containing Fe-Activated Biochar (Fe에 의해 활성화된 목질계 바이오차를 혼입한 모르타르의 전도성능)

  • Jin-Seok Woo;Ai-Hua Jin;Won-Chang Choi;Soo-Yeon Seo;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.27-34
    • /
    • 2024
  • This study was conducted to examine the feasibility of using Fe-activated wood-derived biochar as a conductive filler for manufacturing cement-based strain sensor. To evaluate the compressive and electrical properties of cement composite with 3% Fe-activated biochar, three cubic specimens of size 50 x 50 x 50mm3 and three prismatic cement-based sensors of size 40 x 40 x 80mm3 were prepared respectively. The four-probe method of electrical resistance measurement was used for cement-based sensors. For cement-based sensors with FE-activated biochar, the conductive performance such as electrical resistance and impedance under different water content and repeated compression was investigated. Results showed that the fractional changes in the DC electrical resistivity of cement-based sensors increase with increasing time and the maximum fractional changes in the resistivity decrease with increasing the moisture contents during 900s. At moisture content of 7.5% range, the conductive performance of cement composite including 3% Fe-activated biochar as a conductive filler showed the most stable, while the strain detection ability tended to decrease somewhat as the repeated compressive stress increased between repeated compressive strain and fractional change in resistivity (FCR).