• Title/Summary/Keyword: 충전제어기

Search Result 158, Processing Time 0.024 seconds

A Study on the High Voltage CCPS Using a Resonant Frequency Tracking Type Series Resonant Inverter (공진주파수 추적형 직렬공진 인버터를 이용한 고전압 CCPS에 관한 연구)

  • Rho, Sung-Chan;Kim, Youn-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.107-112
    • /
    • 2005
  • RThis paper presents a high voltage capacitor charging power supply(CCPS) using a series resonant inverter. The CCPS adopted a 45[kHz] IGBT series resonant inverter using PLL control and a high-efficiency, high-voltage transformer. The performance test of the CCPS was carried out with a 14 nF load capacitor at 100[kV] output voltage and 200[Hz] repetition rate. Peak power rate of 18.75[kJ/sec] and charging time of 4.5[mS].

Loss Modeling of Power Converter Stage for Electromagnetic Energy Harvester (전자기 에너지 하베스트용 전력변환기 손실 모델링)

  • Ding, Jiajun;Bae, Hyungjin;An, Hyunsung;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.202-203
    • /
    • 2017
  • 본 논문은 타이어에 적용되는 전자기 에너지 하베스팅 시스템에서 손실 요소를 포함하여 전력변환장치 모델링 하였고, 시뮬레이션과 실험 결과를 비교 분석하여 모델을 검증하였다. 전자기 발전기의 AC 출력은 풀브리지 정류기를 이용해 DC로 변환하였으며, DC-DC 부스트 컨버터를 이용해 전압을 승압하여 배터리를 충전하였다. 전력변환에서 미소 전력을 배터리로 전달하기 위해 에너지 관점에서 해석하였고, 간헐적인 에너지 전달을 이용해 에너지 하베스팅을 구현하였다. 설계된 모델은 전류 제어를 통해 실험과 유사한 입력 및 출력 조건에서 시뮬레이션하였고, 컨버터의 데이터 시트 정보와 비교하여 3% 이내의 오차를 확인하여 제안된 손실 모델을 검증하였다.

  • PDF

Nonlinear Control of an Automatic Transmission Using Sliding Mode (슬라이딩모드를 이용한 자동변속기의 비선형제어)

  • 조승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.605-614
    • /
    • 1995
  • In the automatic transmission using planetary gear there exists nonlinearities due to the finite difference between gear ratios, which yield torque hole during shift and influence on the ride quality and life of clutch. Based on the reaction carrier and converter turbine speed sliding functions are defined. Nonlinear closed-loop control laws are derived using them. Computer simulation shows that the closed loop design is better than the open loop design and semi-closed loop design.

A Study on DC Changing Algorithm of the Line-Interactive UPS with Dual Converter Structure (2중 컨버터 구조를 갖는 계통 연계형 UPS의 DC 충전 알고리듬에 관한 연구)

  • Lee, Woo-Cheol;Yoo, Dong-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.27-34
    • /
    • 2005
  • This paper presents a three phase Line-Interactive uninterruptible power supply(UPS) system with dual converter structure. The three phase UPS system consists of two active power compensator topologies. One is a series active compensator, which works as a voltage source in phase with the source voltage to have the sinusoidal source current and high power factor under the deviation and distortion of the source voltage. The other is a parallel active compensator, which works as a conventional sinusoidal voltage source in phase with the source voltage, providing to the load a regulated and sinusoidal voltage with low total harmonic distortion(THD). This paper presents in the series and parallel active compensator charging method depending on the amplitude of the source voltage. The conventional Line-Interactive UPS system is responsible for the DC charging and output voltage regulation at the same time, but UPS system with dual converter structure, a series active compensator can also charge the DC link. Therefore the charging algorithm using the series and parallel compensator needs to be researched. Therefore, by making the DC link voltage stable it can contribute the stability of series and parallel compensator. The simulation and experimental result are depicted in this paper to show the effect of the proposed algorithm.

Experimental Study on the Operating Characteristics of an Environmental Control System for Avionic Equipments (항공장비용 환경제어시스템의 운전특성에 관한 실험적 연구)

  • Park, Hyung-Pil;Kang, Hoon;Chi, Yong-Nam;Choi, Hee-Ju;Byeon, Young-Man;Kim, Young-Jin;Oh, Kwang-Yoon;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.809-816
    • /
    • 2010
  • An environmental control system is installed to dissipate the thermal load in avionic equipments that are mounted under an aircraft. The operating characteristics of the system change with variations in the control parameters. In this study, an environmental control system was designed and built using R-124 by adopting a vapor compression cycle. The operating characteristics of this system were observed by varying the control parameters, such as refrigerant charging amount, opening of the expansion device, compressor rotation speed, and blower rotation speed. The effect of the control parameters on the environmental control system was analyzed and an optimum control method was identified.

A Study on the SPWM based Power Conversion Technology of the Three-Phase Photovoltaic Inverter Using DSP (DSP를 이용한 3상 태양광 인버터의 SPWM 전력변환기술에 대한 연구)

  • Kim, Hyo-Seong;Yoo, Ho-Sung;Lee, You-Jung;Jung, Hoon;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1099-1106
    • /
    • 2017
  • In this paper, a three phase inverter control methodology for photovoltaic generation system, which is a renewable energy source, was studied. The voltage source inverter type of the constant voltage supply type was selected as the three phase photovoltaic inverter, and SWPM method was selected as control technique. a small capacity three phase photovoltaic inverter system, which has a DSP with powerful high speed data processing ability as the main controller and a solar controller as current controller to supply a certain amount of current to charge the battery, was made and tested for SPWM function.

A Study on High Efficiency OBC with Wide Range Output Using Isolated Current-Fed PFC Converter (절연형 전류원 PFC 컨버터를 사용한 넓은 출력범위를 가지는 고효율 OBC에 대한 연구)

  • Kim, Hyung-Sik;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.99-105
    • /
    • 2019
  • OBC for battery charging of electric vehicles mainly consist of two stages including PFC circuit and isolated DC-DC converter circuit. In general, a non-isolated boost converter is used as the PFC circuit, and a resonant converter capable of ZVS (zero voltage switching) is used as the isolated DC-DC converter. In this paper, we propose an OBC composed of isolated current-fed type PFC circuit and buck DC-DC converter. The proposed OBC is easy to configure the circuit and controller, and can cope with a wide output range. In order to verify the validity of the proposed circuit, a prototype 3.3 ㎾ class prototype was fabricated. As a result, the maximum efficiency and the maximum power factor of 99.2% were confirmed under the operational stability and rated load conditions at the output voltage of 150V ~ 400V.

Development of Clutch Auto Calibration Algorithm for Automatic Transmission Shift Quality Improvement (자동변속기 변속품질 향상을 위한 클러치 자동보정 알고리즘 개발)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.47-56
    • /
    • 2020
  • As a shift control of automatic transmission was managed with the electronic control unit (ECU), shift quality which is a measure of shift shock during gear change has markedly improved. However, the initial clutch pressure control of the clutch filling phase should continue to rely on the predetermined control input since the input and output speeds are unchanged until the shifting process attains the inertia phase. It is critical to minimize the clutch response time and control the clutch pressure accurately at the end of clutch fill to achieve quick shift response and smoothness. Advanced transmission companies have adopted an auto calibration method which establishes the databases for the clutch piston fill-up attributes and the frictional characteristics of the disks. In this study, a distinctive auto calibration algorithm for forklift transmission under development is proposed and verified with the real-vehicle test. The experimental calibration results showed consistent turbine dynamics at the initial stage of shifts with the properly calibrated clutch-fill control parameters. By using this technique, it is necessary to finalize the shift control for the various operation conditions.

Design of Creep Function for Forklift Automatic Transmission (지게차 자동변속기 저속주행기능 설계)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.46-55
    • /
    • 2021
  • A forklift is a powered industrial vehicle used to lift and move materials over short distances. Nowadays, almost all forklifts are equipped with an automatic transmission due to its improved operator comfort and increased productivity. Thanks to marked improvement of transmission control unit equipped with highly-advanced microcontrollers, recently developed automatic transmission for forklift have various auxiliary functions such as creep, auto retardation, and automatic shift with excellent shift quality. This paper deals with the creep function which enables one to maneuver a forklift at the designated low speed by slip control of clutches. The design of creep function was based on four modes of creep operation depending on the status of the operator's shift lever and accelerator pedal. Control algorithms and control parameters for each mode were designed to achieve the desired static and dynamic performance. Vehicle test for the designed creep function was carried out with an independently developed embedded controller. Test results confirmed good creep speed control without speed error at a steady state with a mild shift shock during mode changes by stepping or releasing the accelerator.

The development of 25kW Battery Charger for Electic Railway Vehicles. (철도차량용 25kW급 배터리 충전기 개발.)

  • Shin, H.K.;Choi, S.H.;Hong, C.H.;Jin, Y.S.;Jho, K.Y.;Kim, H.G.
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.139-140
    • /
    • 2013
  • 본 논문에서는 철도차량용 25kW급 배터리 충전기 개발에 대해 설명한다. 열차 판넬 및 제어용 전원으로 사용되는 배터리 전원을 사용한다. 이를 상시 충전하기 위한 충전기는 기존에 보조전원장치의 3상 380V를 받아 강압 변압기를 사용하여 다이오드 정류 혹은 싸이리스터를 사용하였다. 하지만, 기존방식은 강압 변압기가 60Hz의 낮은 주파수로 인하여 사이즈 및 중량 증대를 유발 한다. 이에 본 논문에서는 가선의 높은 전압을 받아 공진형 컨버터를 사용하여 주파수를 높여 변압기의 사이즈 및 중량을 감소 하였으며, 안정적인 전원을 공급 하는 배터리 충전기를 개발 하였다. 이를 25kW급 시제품에 대한 시뮬레이션을 통해 입증 하였다.

  • PDF