• Title/Summary/Keyword: 충돌에너지흡수

Search Result 106, Processing Time 0.024 seconds

Performance of Thrie-Beam Guardrail System withe Impact Attenuator (에너지 흡수 장치를 부착한 트라이빔 가드레일 시스템의 거동)

  • Ko, Man-Gi;Kim, Kee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.381-393
    • /
    • 2001
  • The current traffic situation in Korea can be described as rapid change in traffic volume and diversity in vehicle size from compact cars to large trucks. W-beam barrier most widely used in Korea was found not to satisfy the stiffness requirement for the Koran impact condition of 14 ton-60Km/h-15deg. and it was too stiff for small vehicles impacting with more realistic speed to satisfy the safety of vehicle occupants. To develop a guardrail system satisfying the two contradicting goals, a thrie-beam guardrail system, which had the beam thickness of 3.2mm and rubber cushions, was conceived. Even though the height of the thrie-beam(450mm) is increased by 100mm as compared to that of W-beam (350mm), there was only 2% increase in the weight of the thrie-beam. The new thrie-beam barrier system could contain more wide range of vehicle bumper heights, and showed better performance in the viewpoint of stiffness and energy absorbing capability than the W-beam system. The impact performance was evaluated from a crash test. The developed thrie-beam guardrail system satisfied all applicable criteria for NCHRP 350 test designation 3-10.

  • PDF

Influence Factor Analysis of Projectile on the Fracture Behavior of Aluminum Alloys Under High Velocity Impact with Latin Square Method (라틴방격법을 이용한 고속 충격 알루미늄합금의 파괴거동에 미치는 충격자 영향 분석)

  • Kim, Jong-Tak;Cho, Chang-Hee;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1021-1026
    • /
    • 2011
  • Structural impact problems are becoming increasingly important for a modern defense industry, high-speed transportation, and other applications because of the weight reduction with high strength. In this study, a numerical investigation on the impact fracture behavior of aluminum plates was performed under various projectile conditions such as nose shapes, velocities, and incidence angles. In order to reduce the iterative numerical analysis, the Latin Square Method was employed. The influence factor was then determined by an FE analysis according to the conditions. The results were evaluated by means of a statistical significance interpretation using variance assessment. It was shown that the velocity and incidence angle can be the most important influence factors representing the impact absorption energy and plastic deformation, respectively.

Analysis of Crashworthiness Characteristics of a Regional Aircraft Fuselage using an Explicit Finite Element Method (외연적 유한요소기법을 활용한 리저널급 항공기 동체 내추락 특성 분석)

  • Park, Ill-Kyung;Kim, Sung-Joon;Hwang, In-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1070-1079
    • /
    • 2012
  • The impact energy absorbing is a very important characteristic of an aircraft to enhance the survivability of occupants when an aircraft is under the survivable accident such as an emergency landing condition. The impact energy is generally transmitted into the occupant and absorbed through a landing gear, a subfloor (lower structure of fuselage), and a seat. The characteristic of crash energy absorbing of a subfloor depends on the type of an aircraft, a shape of structure, and an applied material. Therefore, the study of crashworthiness characteristics of a subfloor structure is very important work to improve the safety of an aircraft. In this study, a finite element model of a narrow body fuselage section for the 80~90 seats regional aircraft was developed and crash simulation was executed using an explicit finite element analysis. Through survey of the impact energy distribution of each structural part of a fuselage and floor-level acceleration response, the crashworthiness characteristics and performance was evaluated.

A Study on Rescue Technique and Safe Tow of Damaged Ship (2) - Failure Mechanisms of Collision and Grounding of Double Hull Tanker - (손상된 선박의 구난 기술 및 안전 예항에 관한 연구 (2) - 이중선체 유조선의 충돌 및 좌초에 의한 손상역학거동 -)

  • Lee Sang-Gab;Choi Kyung-Sik;Shon Kyoung-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.82-95
    • /
    • 1998
  • In this paper, two series of numerical simulations are performed using LS/DYNA3D: The first series of numerical simulations are collision events between a 310,000 DWT double hull VLCC (struck ship) and two 35,000 and 105,000 DWT tankers (striking ships). Collisions are assumed to occur at the middle of the VLCC with the striking ships moving at right angle to the YLCC centerline. The second ones, grounding accidents of two 40,000 DWT Conventional and Advanced Double Hull lanker bottom structures, CONV/PD328 and ADH/PD328 models. The overall objective of this study is to understand the structural failure and energy absorbing mechanisms during collision and grounding events for double hull tanker side and bottom structures, which lead to the initiation of inner shell rupture and cause the kinetic energy dissipation to bring the ship to a stop. These numerical simulations will contribute to the estimation of damage extents of collision and grounding accidents and the future improvements in lanker safety at the design stage.

  • PDF

Structural Study of Oligosaccharides by Low Energy Collision Tandem Mass Spectrometry : Effect of the Acetylation Derivatization (저에너지 충돌 탄뎀 질량분석법을 이용한 올리고당의 연결구조 연구:아세틸화 반응이 미치는 영향)

  • Yoo Yoon, Eun Sun
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.3
    • /
    • pp.297-301
    • /
    • 1998
  • Linkage positions in oligosaccharides may be obtained by FAB CAD MS/MS (Fast Atom Bombardment Collision Activated Dissociation Mass Spectrometry/Mass Spectrometry). Acetylated derivatives of the linkage-isomeric trisaccharides exhibited more useful product ion patterns than the free trisaccharides and provided specific fragmentation patterns according to linkage positions. The reason for the useful linkage dependent spectra patterns of acetylated forms is related to the ability of each linkage in the oligosaccharides to absorb different levels of collision energy and rotational freedom of the individual glycosidic linkage.

  • PDF

Study on Buckling Instability of Expansion Tube using Finite Element Method (유한요소법을 이용한 팽창튜브의 좌굴불안전성에 관한 연구)

  • Choi, Won-Mok;Kwon, Tae-Su;Jung, Hyun-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.147-151
    • /
    • 2010
  • Since the kinetic energy is dissipated through plastic deformation energy generated in expanding process of the tube by a die. In order to successfully absorb the kinetic energy there should be no buckling in the expansion tube during expanding process. The buckling instability of the expansion tubes is affected by the initial boundary conditions, tube thickness and length. In this study, the effects of the tube thickness except length and initial boundary condition on the buckling instability are studied using a finite element method. In addition, Analysis procedure for nonlinear post-buckling analysis of expansion tube is established. There are three kinds of finite element analysis procedures for buckling analysis of expansion tube, quasi-static analysis, linear buckling analysis and nonlinear post-buckling analysis. The effect of the geometry imperfections defined as linear superimposition of buckling modes is considered in the nonlinear post-buckling analysis. The results of finite element analysis indicate that the buckling load increase with increase of thickness of tube and geometry imperfection. Finial buckling shapes are changed with respect to the geometry imperfection.

Equivalent Modeling Technique for 1-D Collision Dynamics Using 3-D Finite Element Analysis of Rollingstock (열차의 3차원 유한요소해석을 이용한 1차원충돌 동역학 등가 모델링 기법)

  • Park, Min-Young;Park, Young-Il;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.139-146
    • /
    • 2010
  • In this study, a new equivalent modeling technique of rollingstock for 1-D collision dynamics was proposed using crash analysis of 3-D finite element model in some detail. To obtain good simulation results of 1-D dynamic model, the force-deformation curves of crushable structures should be well modelled with crash analysis of 3-D finite element model. Up to now, the force-deformation curves of the crushable structures have been extracted from crash analyses of sectionally partitioned parts of the carbody, and integrated into 1-D dynamic model. However, the results of the 1-D model were not satisfactory in terms of crash accelerations. To improve this problem, the force-deformation curves of the crushable structures were extracted from collision analysis of a simplified train consist in this study. A comparative study applying the suggested technique shows in good agreements in simulation results between two models for KHST.

Impact Performance of Crashworthy Post Utilizing Conservation of Linear Momentum (선운동량 보존의 법칙을 활용한 감충지주의 충돌거동)

  • Ko, Man-Gi;Kim, Kee-Dong;No, Min-Hyung;Yun, Duk-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8966-8976
    • /
    • 2015
  • Unshielded posts on roadside are a critical hazard to the safety of impact vehicle to the posts. A crashworthy post is developed. In the first phase, it dissipates the impact energy by the linear momentum conservation principle while the plastic impact between the post and vehicle takes place, then, the second phase dissipation follows by the deformation of the energy absorbing modules embedded in the guide trough of the foundation. Simulations of impacts to a rigidly connected post and crashworthy post were made using LS-DYNA program, which demonstrated the danger of unshielded rigidly connected post and the effectiveness of the proposed crashworthy post to the 0.9ton-80km/h impact.

A study on nonlinear crash analysis of railway tankcar according to the overseas crashworthiness regulations (해외 충돌안전규정에 따른 유류탱크화차의 비선형충돌해석 연구)

  • Son, Seung Wan;Jung, Hyun Seung;Ahn, Seung Ho;Kim, Jin Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.843-850
    • /
    • 2020
  • The purpose of this study is to evaluate the structural risk and weakness of a railway tank car through nonlinear collision analysis according to overseas collision safety standards. The goal is to propose a crash safety design guideline for railway tank cars for transporting dangerous goods in Korea. We analyzed the buffer impact test procedure of railway freight cars prescribed in EN 12663-2 and the tank puncture test criteria prescribed in 49CFR179. A nonlinear finite element model according to each standard was modeled using LS-DYNA, a commercial finite element analysis solver. As a result of the buffing impact test simulation, it was predicted that plastic deformation would not occur at a collision speed of 6 km/h or less. However, plastic deformation was detected at the rear of the center sill and at the tank center supporting the structure at a collision speed of 8 km/h or more. As a result of a head-on test simulation of tank puncture, the outer tank shell was destroyed at the corner of the tank head when 4% of the kinetic energy of the impacter was absorbed. The tank shell was destroyed in the area of contact with the impacter in the test mode analysis of tank shell puncture when the kinetic energy of the moving vehicle was reduced by 30%. Therefore, the simulation results of the puncture test show that fracture at the tank shell and leakage of the internal material is expected. Consequently, protection and structural design reinforcement are required on railway tank cars in Korea.

Collision Energy Absorption of Airbag Bumpers (에어백 범퍼의 충격 에너지 흡수 거동)

  • 류한선;정관수;윤재륜
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.243-246
    • /
    • 2002
  • 자동차 차체 제작을 위해서는 차체의 견고성과 승객의 안전성을 동시에 고려하여 너무 강하거나 너무 무르지 않은 재질의 선택과 차체 설계의 최적화가 요구된다. 본 논문에서는 차량 충돌 시 자동차의 안전도를 향상시키면서 차량의 손상을 최소화 함으로써 수리비를 절감하기 위한 목적으로 TPU(Thermoplastic Polyurethane Elastomer)에 공기를 채워서 만든 에어백 자동차 범퍼를 개발하였다. (중략)

  • PDF