• Title/Summary/Keyword: 충격 해석 Noise

Search Result 184, Processing Time 0.025 seconds

Optimal Design for Cushioning Package of a Heavy Electronic Product using Mechanical Drop Analysis (낙하충격해석을 통한 대형 전자제품의 완충포장재 최적설계)

  • 금대현;김원진;김성대;박상후
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.677-683
    • /
    • 2003
  • Generally, heavy electronic products undergo many different types of shocks in transporting from a manufacturer to customers. Cushioning package materials are used to protect electronic products from severe shock environments. Since the mass distributions of heavy electronic products are usually unbalanced and complex, it is very difficult to design a cushioning package with haying high performance by considering only the equivalent stiffness of that. Therefore, when designing the cushioning material for a heavy electronic product, it is necessary to optimize its shape in order to maximize the cushioning performance. In this study, it is focused on designing an optimal shape of cushioning material for a large-sized refrigerator and an efficient design method is suggested by using a dynamic finite element analysis. As the results of this study, the optimal shape of cushioning material, which has high cushioning performance and minimized volume, was obtained from the drop analysis and a optimization process. From free drop tests of a refrigerator, it was identified that the cushioning performance of the optimal package were improved up to 16 % and the volume of it was reduced in a range of 22 %.

  • PDF

Analysis of dynamic characteristics between disk and slider with operational shock in hard disk drive (하드 디스크 드라이브 동작 상태 충격 시에 램프 충돌 유무에 따른 디스크와 슬라이더의 거동해석)

  • Kim, Min-Jae;Lim, Geonyup;Park, Kyoung-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.975-977
    • /
    • 2014
  • Recently, As portability of storage device has been increased, it is important to analyze the precise anti-shock analysis. For non-operational shock analysis, the accuracy of non-operational shock simulation has been improved. However, because operational shock analysis includes nonlinear process, it is hard to get clear result from operational shock simulation. In this paper, by using Lagrange multiplier method, the FE model including ramp-disk contact of nonlinear process will be analyzed. Through this, we find ramp-disk contact affect the dynamic of slider. Additionally, for the more accurate analysis, we should include ramp-disk contact process at the FE model.

  • PDF

Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System (차량용 MR충격댐퍼의 동특성 해석)

  • Song, Hyun-Jeong;Woo, Da-Vid;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.754-761
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed to reduce force transmitted to the vehicle chassis and finally to protect occupants from injury. In the case of head-on collision, the bumper makes main role of isolation material for collision attenuation. In this study, the proposed bumper system consists of MR impact damper and structures. The MR impact damper utilizes MR fluid which has reversible properties with applied magnetic field. The MR fluid operates under flow mode. The bellows is used for generation of fluid flow. A mathematical model of the MR impact damper is derived incorporating with Bingham model of the MR fluid. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

Shock Separation Test of KOMPSAT-II (다목적 실용위성 2호 충격 분리 시험)

  • 우성현;김홍배;문상무;김영기;김규선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1000-1005
    • /
    • 2003
  • The shock separation test simulates the environmental effects of the spacecraft separation from launch vehicle. The shock separation test for a structural model of KOMPSAT-Ⅱ(Korea Multi-Purpose SATellite Ⅱ) was performed in SITC(Satellite Integration & Test Center) launch environmental test hall at KARI(Korea Aerospace Research Institute) to verify the shock test requirement of the spacecraft, to predict the induced acceleration responses on the primary structures and payloads by the explosion of pyre-lock and to perform mechanical fit check. The spacecraft with S/A was mated vertically to LV(Launch Vehicle) adapter simulator via a clamp band, then hoisted and suspended above a foam test bed by four isolation springs secured to the spacecraft hoist fittings to isolate the payload platform shock wave from the sling elements. For separation process, real pyre-devices were used and the time response signals from 60 accelerometers installed on the interested points was acquired and recorded. The SRS responses for each response channels were calculated and the achieved SRS's on the separation plane was reviewed and evaluated in comparison to the ICD(Interface Control Document) value.

  • PDF

Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System (차량용 MR 충격댐퍼의 동특성 해석)

  • Song, Hyun-Jeong;Woo, David;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.147-152
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed for reduce transmitted force to vehicle chassis and finally protect occupants from injury. In the case of frontal collision, the bumper make main role of isolation material for collision attenuation. In this study, proposed bumper system composed of MR impact damper and structures. The MR impact damper is to adopted MR fluid which has reversible properties with applied magnetic field. MR fluid operates under flow mode with Bingham flow and bellows is used for generation of fluid flow. Mathematical model of MR impact damper incorporated with MR fluid is established. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

  • PDF

Impact Force and Acoustic Analysis on Composite Plates with In-plane Loading (면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석)

  • Kim, Sung-Joon;Hwang, In-Hee;Hong, Chang-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2012
  • The potential hazards resulting from a low-velocity impact(bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or leading edges has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

A Computational Study of the Impulsive Wave Discharged from a Circular Tube (원형관으로부터 방출되는 펄스파에 대한 수치해석적 연구)

  • Lee, Young-Ki;Kweon, Yong-Hun;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.850-856
    • /
    • 2004
  • When a shock wave arrives at the open end of a tube, an impulsive wave is discharged from the tube exit and causes serious noise and vibration problems. In the current study, the effect of the cross-sectional area of a circular tube on the impulsive wave is investigated using computational methods. Marten-Yee's TVD scheme was employed to solve axisymmetric, unsteady, compressible Euler equations. With a change in the cross-sectional area of the tube, the Mach number of an incident shock wave is varied between 1.01 and 1.50. The results obtained show that the magnitude of the impulsive wave strongly depends upon the Mach number of the incident shock wave and the cross-sectional area of the tube. It is also found that for a given cross-sectional area of the tube, the impulse wave has strong directivity to the tube axis.

A Study on Vibration Characteristics of Cylindrical Shells Structure for a Large Vertical Pump with Cutouts (개구부가 있는 대형 수직펌프 쉘구조물의 진동특성 연구)

  • Lee, Hyung;Kim, Yearn-Hwan;Lee, Kyou-Seok;Park, Soo-Mi;Lee, Young-Sin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.181-186
    • /
    • 1994
  • 본 연구에서는 수직펌프 구조물의 동적특성을 규명하기 위해 역학적인 해석과 유한요소법의 상용코드인 ANSYS를 이용하여 수치해석한 결과를 현장실험을 통한 분석 결과와 비교 검토하였다. 구조물 진동의 해석은 현재 가동중인 화력발전소의 수직 순환수 펌프(해수 순환수 펌프)를 대상으로 하였으며 고유진동수의 예측 및 실체 측정을 하였다. 수직순화수 펌프의 고유진동수 측정은 정지된 상태에서 충격가진 방법 및 전기자석식 가진기를 이용 실시되었으며 임시로 별도 설치된 펌프구조물의 지지봉에 대한 진동 영향평가도 하였다.

  • PDF

Numerical Analysis of Randomly Driven Vibro-Impact System With a Coefficient of Restitution Contact Mechanism (불규칙가진의 반발계수 진동-충격 시스템의 수치해석)

  • 이창희
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.513-523
    • /
    • 1998
  • Impact response of a vibro-impact system and its contact mechanism was studied. The vibro-impact system is composed of a small secondary system is constrained to move along a slot of fixed length in a large primary system. The contact mechanism is characterized by its coefficient of restitution. Numerical simulation analysis has been used to determine the time-history and the impact statistics of the primary and secondary systems. Input excitation of the primary system was random, and the responses obtained were the velocities of the primary and secondary system, the closing velocity in time axis and the duration time between impacts. The validity of the numerical simulation method was checked by comparing the results with those obtained by other researchers analytically. It is shown that the results obtained by the nemerical simulation analysis showed a good agreement with those for the analytical method.

  • PDF

Tunnel Sonic Boom Analysis using monopole source modeling (홀극음원 모델링을 이용한 고속전철 터널 충격성 소음해석)

  • Jung W.T.;Yoon T.S.;Lee S.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.427-432
    • /
    • 1999
  • When a high-speed train enters a tunnel, a compression wave is generated. This wave subsequently emerges from the exit portal of the tunnel, which causes an impulsive noise called 'Sonic boom' or 'micro-pressure wave'. In the present study, new method is presented for prediction of sonic boom noise, especially focusing on the effect of the nose shape of the train on the resultant noise. Acoustic theory for monopole source is used to represent a nose shape of the train in wave equation. Compression wave propagation in tunnel considering tunnel track condition and emission of sonic boom was calculated. The predicted compression waves and impulsive sound waves are compared with recent measurements, and show reasonable agreements.

  • PDF