• Title/Summary/Keyword: 충격파 속도

Search Result 171, Processing Time 0.034 seconds

Analysis on Shock Attenuation of STS Bulkhead Initiator (STS 격벽착화기의 충격파 감쇠 특성 해석)

  • Kim, Bohoon;Jang, Seung-gyo;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.440-444
    • /
    • 2017
  • Two-dimensional hydrodynamic analysis was performed to analyze the attenuating characteristics of shock waves generated by the detonation of the bulkhead initiator. Through the interlocking analysis between HNS and HMX stacking initiator and STS bulkhead, we have precisely simulated detonation growth and pressure wave attenuation phenomena. The free surface velocity at the surface of the bulkhead was measured for quantitative comparison with the test data by VISAR. As a result, it was confirmed that the pressure attenuating pattern of the shock wave exponentially decreased according to the bulkhead thickness. The observed inflection point at the particle velocity measured over time is due to the subsequent propagation of the shock wave due to the rapid spallation of the interface between the detonator and the bulkhead.

  • PDF

A Study on Shock Attenuation according to the Flyer Characteristics of a Subminiaturized EFI detonator (초소형 EFI 착화기의 비행편 특성에 따른 충격파 감쇠 연구)

  • Yu, Hyeonju;Kim, Bohoon;Jang, Seung-gyo;Kim, Kyu-Hyoung;Yoh, Jack Jaick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.426-432
    • /
    • 2017
  • An experimental and numerical study on shock attenuation in a solid by a subminiature flyer impact was conducted to determine the performance of a subminiature exploding foil initiator such as, flyer velocity and impulse loading. The obtained attenuation pattern shows the possibility to determine the critical flyer velocity for initiating the miniaturized pyrotechnic unit by figuring out shock intensity and duration according to flight characteristics.

  • PDF

Shock Compression of Metal using High Energy Laser and Innovative Applications (고 에너지를 이용한 충격파 발생과 응용)

  • Lee, Hyun-Hee;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.353-357
    • /
    • 2007
  • We have been setting up experiments on propagation of shock waves generated by the pulsed laser ablation. One side of a thin metal foil is subjected to laser ablation as a shock wave propagates through the foil. The shock wave, which penetrates through the foil is reflected by an acoustic impedance which causes the metal foil to high-strain rate deform. This short time physics is captured on an ICCD camera. The focus of our research is applying shock wave and deformation of the thin foil from the ablation to accelerating micro-particles to a very high speed.

  • PDF

Research of the Scramjet Engine Performance Test Technique at T4 Free Piston Shock Tunnel in University of Queensland, Australia (호주 UQ의 T4 Free Piston Shock Tunnel에서의 스크램제트 엔진 성능시험 기법 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.267-270
    • /
    • 2007
  • Korea Aerospace Research Institute(KARI) made a scramjet engine test contract with the University of Queensland in October 2006. The experiments were conducted at Mach 7.6, Altitude 31.2 km condition in the T4 free piston-driven shock tunnel in June 2007. In this paper, the short introduction and data processing technique of the T4 free piston-driven shock tunnel will be explained.

  • PDF

The consideration about pressure on surface of cone shape in experiments of supersonic wind tunnel I (초음속풍동실험에서 원뿔형상의 표면에서 측정되는 압력에 대한 고찰 I)

  • Lee, Jae-Ho;Choi, Jong-Ho;Yoon, Hyun-Gull;Kim, Kyu-Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.391-394
    • /
    • 2011
  • In this paper, the shock angle and effect had been compared with numerical data within supersonic area at an forebody such as missiles or an aircraft. By using supersonic wind tunnel in Seoul National University, The shock position and magnitude were measured in the model of cone shape according to mach number. The experiment had been conducted at mach number 2.0, 3.0, and 3.8. As a result, the shock position and magnitude are different from flow velocity, AOA, and AOS in some cases blockage effect had occurred.

  • PDF

Acoustic outputs from clinical ballistic extracorporeal shock wave therapeutic devices (임상에서 사용중인 탄도형 체외충격파 치료기의 음향 출력)

  • Cho, Jin Sik;Kwon, Oh Bin;Jeon, Sung Joung;Lee, Min Young;Kim, Jong Min;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.570-588
    • /
    • 2022
  • We scrutinized the acoustic outputs from the 70 shock wave generators of the 15 product models whose technical documents were available, among the 46 ballistic extracorporeal shock wave therapeutic devices of 11 domestic and 6 foreign manufacturers, approved by the Minster of Food & Drug Safety (Rep. Korea). We found that the acoustic Energy Flux Density (EFD), the most popular exposure parameter, was different by up to 563.64 times among shock wave generators at their minimum output settings and by up to 74.62 times at their maximum settings. In the same product model, the EFD was shown to vary depending on shock wave transmitters by up to 81.82 times at its minimum output setting and by up to 46.15 times at its maximum setting. The lowest EFD 0.013 mJ/mm2 at the maximum output settings was much lower (2.1 %) than the maximum value 0.62 mJ/mm2 at the minimum settings. The Large acoustic output differences (tens to hundreds of times)from the therapeutic devices approved for the same clinical indications imply that their therapeutic efficacy & safety may not be assured. The findings suggest the regulatory authority to revise her guideline to give clearer criteria for clinical approval and equality in performance, and recommend the authority to initiate a post-approval surveillance as well as a test in conformance between the data in technical documents and the real acoustic outputs clinically used.

Implications and numerical application of the asymptotical shock wave model (점진적 충격파모형의 함축적 의미와 검산)

  • Cho, Seong-Kil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.51-62
    • /
    • 2012
  • According to the Lighthill and Whitham's shock wave model, a shock wave exists even in a homogeneous speed condition. They referred this wave as unobservable- analogous to a radio wave that cannot be seen. Recent research has attempted to identify how such a counterintuitive conclusion results from the Lighthill and Whitham's shock wave model, and derive a new asymptotical shock wave model. The asymptotical model showed that the shock wave in a homogenous speed traffic stream is identical to the ambient vehicle speed. Thus, no radio wave-like shock wave exists. However, performance tests of the asymptotical model using numerical values have not yet been performed. We investigated the new asymptotical model by examining the implications of the new model, and tested it using numerical values based on a test scenario. Our investigation showed that the only difference between both models is in the third term of the equations, and that this difference has a crucial role in the model output. Incorporation of model parameter${\alpha}$ is another distinctive feature of the asymptotical model. This parameter makes the asymptotical model more flexible. In addition, due to various choices of ${\alpha}$ values, model calibration to accommodate various traffic flow situations is achievable. In Lighthill and Whitham's model, this is not possible. Our numerical test results showed that the new model yields significantly different outputs: the predicted shock wave speeds of the asymptotical model tend to lean toward the downstream direction in most cases compared to the shock wave speeds of Lighthill and Whitham's model for the same test environment. Statistical tests of significance also indicate that the outputs of the new model are significantly different than the corresponding outputs of Lighthill and Whitham's model.

Analysis on Shock Wave and Sensitivity of Explosives in Through-Bulkhead Initiator (격벽착화기 화약의 충격파와 민감도 분석)

  • Jang, Seung-gyo;Hwang, Jung-min;Baek, Sung-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.36-43
    • /
    • 2017
  • We studied attenuation characteristics of shock waves induced by a donor charge and the sensitivity of an acceptor for optimal design of a TBI (Through-bulkhead initiator). The attenuation behavior of shock waves was studied by measuring free surface velocity using a VISAR (Velocity Interferometer System for Any Reflector), and the sensitivity of the acceptor explosives was analyzed via SSGT (Small Scale Gap Test). It was found that the acceptor sensitivity obtained by the SSGT may be inappropriate for the design of the small-scale explosive devices such as TBI due to the different shock duration time.

Dynamic Behaviors of Metal Matrix Composites in Low Velocity Impact (저속 충격하에서의 금속복합재료의 동적 특성)

  • ;Gamal A. Aggag;K.Takahashi
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • This study has observed that the dynamic behavior of Metal Matrix Composites (MMCs) in low velocity impact varies with impact velocity. MMCs with 15 fiber volume percent were fabricated by using the squeeze casting method. The AC8A was used as the matrix, and the alumina and the carbon were used as reinforcements. The tensile and vibration tests conducted yielded the yielded the tensile stress and elastic modulus of MMCs The low pass filter and instrumented impact test machine was adopted to study dynamic behaviors of MMCs corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact energy of unreinforced alloy and MM s increased as the impact velocity increased. The increase of crack propagation energy was especially prominent, but the dynamic toughness of each material did not change much. To show the relation between crack initiation energy and dynamic fracture toughness, a simple model was proposed by using the strain energy and stress distribution at notch. The model revealed that crack initiation energy is proportional to the square of dynamic fracture toughness and inversely proportional to elastic modulus.

  • PDF