• Title/Summary/Keyword: 충격스펙트럼

Search Result 84, Processing Time 0.025 seconds

Study on the physical properties of nylon66/glass fiber composites as a function of extrusion number (나일론66/유리섬유 복합체의 압출횟수에 따른 특성 연구)

  • Lee, Bom Yi;Kim, Youn Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3990-3996
    • /
    • 2014
  • Because the physical properties can be decreased when a Nylon 66/glass fiber composite is injected into a mold over $300^{\circ}C$, a systematic study of the thermal history in the case of re-use is needed. Nylon 66/glass fiber extrudates as a function of the extrusion number were prepared using a twin screw extruder at 305/290/273/268/265/$260^{\circ}C$. The chemical structure, thermal properties, melt index, crystal structure, Izod impact strength, and rheological properties were measured by Fourier transform infra-red (FT-IR), melt indexer, DSC, TGA, XRD, Izod impact tester, and dynamic rheometer. The FT-IR spectra indicated that the number of extrusions did not affect the chemical structure. The decrease in molecular weight with increasing extrusion number was confirmed by the melt index and the complex viscosity of extrudates. Based on the DSC and TGA results, the thermal history had no effect on the melting temperature, regardless of the number of extrusions, but the degradation temperature decreased up to $20^{\circ}C$ with increasing extrusion number. The Izod impact strengths of the extrudates were found to decrease with increasing extrusion number. No structural change after extrusion was also confirmed because there was no change in the slope and shape of the G'-G" plot.

Assessment of Impact-echo Method for Cavity Detection in Dorsal Side of Sewer Pipe (하수관거 배면 공동 탐지를 위한 충격반향법의 적용성 평가)

  • Song, Seokmin;Kim, Hansup;Park, Duhee;Kang, Jaemo;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.5-14
    • /
    • 2016
  • The leakage of water under sewer pipelines is one of main sources of sinkholes in urban areas. We performed laboratory model tests to investigate the presence of cavities using impact-echo method, which is a nondestructive test method. To simulate a concrete sewer pipe, a thin concrete plate was built and placed over container filled with sand. The cavity was modeled as an extruded polystyrene foam box. Two sets of tests were performed, one over sand and the other on cavity. A new impact device was developed to apply a consistent high frequency impact load on the concrete plate, thereby increasing the reliability of the test procedure. The frequency and transient characteristics of the measured reflected waveforms were analyzed via fast Fourier transform and short time Fourier spectrum. It was shown that the shapes of Fourier spectra are very similar to one another, and therefore cannot be used to predict the presence of cavity. A new index, termed resonance duration, is defined to record the time of vibration exceeding a prescribed intensity. The results showed that the resonance duration is a more effective parameter for predicting the presence of a cavity. A value of the resonance period was proposed to estimate the presence of cavity. Further studies using various soil types and field tests are warranted to validate the proposed approach.

The Study on the Development of Environmental-friendly Surface Material Using Condensed Tannin (축합형 탄닌을 이용한 친환경 건축마감재 개발에 관한 연구)

  • Jo, Jae-Min;Park, Moon-Soo;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • Medium-density fiberboard (MDF) is widely used as an indoor building materials. However, formaldehyde resins, commonly used to bind MDF together, emit formaldehyde and other volatile organic compounds that cause health risk at sufficient concentration. In this study, condensed tannin having formaldehyde absorption ability was used to solve the problem of formaldehyde emission generated from surface material. The synthesis of melamine-formaldehyde resin and reaction of melamine-formaldehyde and condensed tannin were analyzed by FT-IR spectrum. Also surface properties, such as shear force, impact strength, tape adhesion, pencil hardness and gloss retention were measured. Free formaldehyde analysis was performed to analyze remaining unreacted formaldehyde. According to the results, the optimum shear force and impact strength could be obtained by 10 wt.% usage of condensed tannin. In cases of pencil hardness and gloss retention, the optimum properties could be obtained at 20 wt.% of condensed tannin. The amounts of formaldehyde emission of surface material containing 20 wt.% of condensed tannin was 59 ${\mu}g/m^2{\cdot}h$. The amounts of formaldehyde emission could be reduced 3 times by using 20 wt.% of condensed tannin.

Study on Supersonic Jet Noise Reduction Using a Mesh Screen (메쉬 스크린을 이용한 초음속 제트소음 저감법에 관한 실험적 연구)

  • Kweon, Yong-Hun;Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.377-381
    • /
    • 2006
  • This paper describes experimental work to control supersonic jet noise using a mesh screen that is placed at the nozzle exit plane. The mesh screen is a wire-gauze screen that is made of long stainless wires with a very small diameter. The nozzle pressure ratio is varied to obtain the supersonic jets which are operated in a wide range of over-expanded to moderately under-expanded jets. In order to perturb mainly the initial jet shear layer, the hole is perforated in the central part of the mesh screen. The hole size is varied to investigate the noise control effectiveness of the mesh screen. A schlieren optical system is used to visualize the flow fields of supersonic jet with and without the mesh screen device. Acoustic measurement is performed to obtain the OASPL and noise spectra. The results obtained show that the present mesh screen device leads to a substantial suppression of jet screech tones. The hole size is an important factor in reducing the supersonic jet noise. For over-expanded jets, the noise control effectiveness of the mesh screen appears more significant, compared to correctly and under-expanded jets

  • PDF

Synthesis, characterization and spectral studies of various newer long chain aliphatic acid (2-hydroxy benzylidene and 1H-indol-3-ylmethylene) hydrazides as mosquito para-pheromones

  • Awasthi, Suman;Rishishwar, Poonam;Rao, Ambati N.;Ganesan, Kumaran;Malhotra, Ramesh Chandra
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.6
    • /
    • pp.506-512
    • /
    • 2007
  • Various long chain aliphatic acid hydrazides react with aromatic and heterocyclic aldehydes in alcoholic medium in refluxing conditions to give corresponding 2-hydroxy benzylidene and 1H-indol-3-ylmethylene hydrazides, a newer class of mosquito para-pheromones. We describe here synthesis of various novel long chain aliphatic acid (2- hydroxy benzylidene and 1H-indol-3-ylmethylene) hydrazides by conventional as well as microwave irradiation techniques. The structures of these compounds have been confirmed by spectroscopic techniques (FTIR, NMR & MS). Some of the interesting features of the electron impact mass spectral fragmentation pattern of these compounds have also been discussed.

Numerical Computations on Extreme Wave Loads on a Vertical Cylinder Considering Hydroelastic Response (유탄성 응답을 고려한 수직 실린더에 작용하는 극한 파랑 충격력 수치해석)

  • Kyoung, Jo-Hyun;Hong, Sa-Young;Kim, Byoung-Wan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.195-201
    • /
    • 2006
  • The wave load and its influence on the response of offshore structure have been well investigated through the statistical approach based on the linear theory. The linear approach has a limitation to apply the extreme condition such as freak wave, which corresponds to extreme value of wave spectrum. The main topic of present study is to develop an efficient numerical method to predict wave load induced by extreme wave. As a numerical method, finite element method based on variational principle is adopted. The frequency-focusing method is applied to generate the extreme wave in the numerical wave tank. The wave load on the bottom mounted vertical cylinder is investigated. The hydroelastic response of the vertical cylinder is also investigated so as to compare the wave loads with the rigid body case in the extreme wave condition.

  • PDF

Vibrational Modes of Pyeongeong (편경의 진동모드 분석)

  • Yoo June-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.121-128
    • /
    • 2006
  • Korean pyeongyeong, a set of sixteen L-shape chime stones covering one and one third octaves, is a standard instrument in the Korean traditional court music. We analyze the vibrational mode frequencies in a pyeongyeong replica which is played at the National Center for Korean Traditional Performance Arts and pyeongyeong remains which are exhibited at King Sejong Memorial Museum. The modal shapes on the Whangjong, the 1st stone and Cheonghyurjong, the 16th stone mapped by scanning accelerometer, TV holography and STAR system. The nominal frequencies in pyeongyeong replica at the National Center for Korean Traditional Performance Arts increase linearly with the thickness of the stones and the tones are tuned in line with the musical scale of Sambunsonik. The sexagenary cycles on the pyeongyeong remains at King Sejong Memorial. which show the Year of product indirectly, are different each other and the tones are not tuned in scale. The relative frequency ratios of each modes on stones differ more than just-noticeable differences from those on the pyeongyeong replica. Modal shapes are same for the two stones regardless of the thickness.

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.

Optical properties of Nb2O5 thin films prepared by ion beam assisted deposition (이온빔 보조 증착 Nb2O5 박막의 광학적 특성)

  • 우석훈;남성림;정부영;황보창권;문일춘
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2002
  • We studied the optical and structural properties of conventional and ion-beam-assisted-deposition (IBAD) Nb$_2$O$_{5}$ films which were evaporated by an electron beam gun. The vacuum-to-air spectral shift and the cross sectional SEM images of the Nb$_2$O$_{5}$ films were investigated. The results show that the IBAD Nb$_2$O$_{5}$ films have a higher packing density than the conventional Nb$_2$O$_{5}$ films. The average refractive index of IBAD Nb$_2$O$_{5}$ films was increased, while the extinction coefficient was decreased compared with the conventional films. As the oxygen flow was increased, the average refractive index and extinction coefficient of the conventional and IBAD films decreased. Both the conventional and IBAD Nb$_2$O$_{5}$ films showed inhomogeneity in refractive index, and the degree of inhomogeneity of the IBAD Nb$_2$O$_{5}$ films became larger as the ion current density was increased. All Nb$_2$O$_{5}$ films were found to be amorphous by x-ray diffraction (XRD) analysis, and hence the crystal structure of Nb$_2$O$_{5}$ films was not changed by IBAD.

Estimation of Displacement Responses Using the Wavelet Decomposition Signal (웨이블릿 분해신호를 이용한 변위응답의 추정)

  • Jung, Beom-Seok;Kim, Nam-Sik;Kook, Seung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.347-354
    • /
    • 2006
  • In this paper we have attempted to bring the wavelet transform theory to the dynamic response conversion algorithm. This algorithm is proposed for the problem of estimating the displacement data by defining the transformed responses. In this algerian, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The advantage of the wavelet transform over either a pure spectral or temporal decomposition of the signal is that the pertinent signals features can be characterized in the time-frequency plane. In the response conversion procedure using the wavelet decomposition signals, not only the static component can be extracted, but also the dynamic displacement component can be separated by the structural mode from the identified displacement response. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.