• Title/Summary/Keyword: 출력축 연결방식

Search Result 6, Processing Time 0.024 seconds

Characteristics on the Output Coupled Type CVT Combined Differential Gear Unit (차동기어장치를 적용한 출력축 연결방식 무단변속기의 특성해석에 관한 연구)

  • Choi, Sang-Hoon;Kim, Yeon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.205-215
    • /
    • 2001
  • Continuously variable transmission(CVT) mechanisms considered here combine the functions of a 2K-H I type differential gear unit and a V-belt continuously variable unit(CVU). One shaft of the V-belt CVU is connected directly to the differential gear unit and remaining shaft of it is linked to the output shaft. These mechanisms have many advantage which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range, and the generation of geared neutral. In this paper six different mechanisms of output coupled type CVT are proposed. Some useful theoretical formula related to speed ratio, power flow and efficiency are derived and analyzed, and theoretical analysis are proven by various experiments.

  • PDF

Operation limits analysis of PW206C turboshaft engine in manual mode (PW206C 터보축 엔진의 수동운용범위 분석)

  • Lee, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.42-47
    • /
    • 2008
  • The power control system of Smart UAV is similar to the propeller pitch governing concept of turboprop aircraft. The pilot adjusts the engine power directly and the pitch governor controls the propeller pitch to maintain the propeller rotational speed. The electronic engine controller(EEC) of PW206C engine developed for helicopter is not fit for the power control concept of Smart UAV, and therefore the manual back-up system of PW206C engine is used for the engine power control of Smart UAV. Engine performance estimation program is used to predict the control range of power lever angle(PLA) according to the variation of engine output shaft speed, flight altitude and flight speed. These data provide a guide for the PLA control in manual mode operation.

Operation limits analysis of PW206C turboshaft engine In manual mode (PW206C 터보축 엔진의 수동운용범위 분석)

  • Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.339-342
    • /
    • 2007
  • The power control system of Smart UAV is similar to the propeller pitch governing concept of turboprop aircraft. The pilot inputs the engine power directly and the pitch governor controls the propeller pitch to maintain the propeller RPM. The manual back-up system of PW206C engine is used for the engine power control of Smart UAV. Engine performance estimation program is used to predict the control range of power lever arm(PLA) angle according to the variation of flight altitude and speed. These data provide a guide for the engine control in manual mode operation.

  • PDF

A embodiment of mouse pointing system using 3-axis accelerometer and sound-recognition module (3축 가속도센서 및 음성인식 모듈을 이용한 마우스 포인팅 시스템의 구현)

  • Lee, Seung-Joon;Shin, Dong-Hwan;Kasno, Mohamad Afif B.;Kim, Joo-Woong;Park, Jin-Woo;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.934-937
    • /
    • 2010
  • In this paper, we did pursue the embodiment of a mouse pointing system which help the handicapped and people of not familiar with using electronics use electronic devices easily. Speech Recognition and 3-axis acceleration sensors in conjunction with a headset, a new mouse pointing system is constructed. We used speaker dependent system module which are generating the BCD code by recognizing human voices because it has high recognition rate rather than speaker independent system. Head-set mouse system is organized by 3-axis accelerometer, sound recognition module and TMS320F2812 processor. The main controller, TMS320F2812 DSP-processor is communicated with main computer by using SCI communications. The system is operated by Visual Basic in PC.

  • PDF

A Design Method of Three-phase IPMSM and Clamping Force Control of EMB for High-speed Train (고속철도차량의 EMB 적용을 위한 3상 IPMSM의 설계 및 제동압부력 제어)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Kwak, Min-ho;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • This paper proposes a design method for a 3-phase interior permanent magnet synchronous motor (IPMSM) and clamping force control method for an electro-mechanical brake (EMB) using co-simulation for a high-speed train (HST). A traditional pneumatic brake system needs much space for the compressor, brake reservoir, and air pipe. However, an EMB system uses up to 50% less space due to the use of a motor and electric wires for controlling the brake caliper. In addition, it can reduce the latency time for brake control because of the fast response and precise control. A train that has many brakes is advantageous for safety because of the control by sharing the braking force. In this paper, a driving method for a cam-shaft-type EMB is modeled. It is different from the ball-screw-type brakes that are widely used in automobiles. In addition, a co-simulation method is proposed using JMAG and Matlab/Simulink. The IPMSM was designed and analyzed with the JMAG tool, and the control system was simulated using Matlab/Simulink. The effectiveness of the co-simulation results of the mechanical clamping force and braking force was verified by comparison with the clamping force specifications of a HEMU-430X HST.

A study on the new hybrid recurrent TDNN-HMM architecture for speech recognition (음성인식을 위한 새로운 혼성 recurrent TDNN-HMM 구조에 관한 연구)

  • Jang, Chun-Seo
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.699-704
    • /
    • 2001
  • ABSTRACT In this paper, a new hybrid modular recurrent TDNN (time-delay neural network)-HMM (hidden Markov model) architecture for speech recognition has been studied. In TDNN, the recognition rate could be increased if the signal window is extended. To obtain this effect in the neural network, a high-level memory generated through a feedback within the first hidden layer of the neural network unit has been used. To increase the ability to deal with the temporal structure of phonemic features, the input layer of the network has been divided into multiple states in time sequence and has feature detector for each states. To expand the network from small recognition task to the full speech recognition system, modular construction method has been also used. Furthermore, the neural network and HMM are integrated by feeding output vectors from the neural network to HMM, and a new parameter smoothing method which can be applied to this hybrid system has been suggested.

  • PDF