• Title/Summary/Keyword: 출력선량

Search Result 143, Processing Time 0.023 seconds

Design and Dose Distribution of Docking Applicator for an Intraoperative Radiation Therapy (수술중 방사선치료를 위한 조립형 조사기구의 제작과 선량 분포)

  • Chu, Sung-Sil;Kim, Gwi-Eon;Loh, John-Kyu
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.123-130
    • /
    • 1991
  • A docking intraoperative electron beam applicator system, which is easily docking in the collimator for a linear accelerator after setting a sterilized transparent cone on the tumor bearing area in the operation room, has been designed to optimize dose distribution and to improve the efficiency of radiation treatment method with linear accelerator. This applicator system consisted of collimator holder with shielded metals and docking cone with transparent acrylic cylinder, A number of technical innovations have been used in the design of this system, this dooking cone gives a improving latral dose coverage at therapeutic volume. The position of $90\%$ isodose curve under suface of 8 cm diameter cone was extended $4\sim7$ mm at 12 MeV electron and the isodose measurements beneath the cone wall showed hot spots as great as $106\%$ for acrylic cone. The leakage radiation dose to tissues outside the cone wall was reduced as $3\sim5\%$ of output dose. A comprehensive set of dosimetric characteristics of the intraoperative radiation therapy applicator system is presented.

  • PDF

선형가속기 출력 점검에 사용하는 열형광선량계의 에너지 의존도 평가

  • Park, Seong-Ho;Gang, Se-Gwon;Jo, Byeong-Cheol;Lee, Byeong-Cheol;Kim, Gwi-Ya;Jeong, Hui-Gyo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.33-35
    • /
    • 2004
  • 방사선치료를 위한 고에너지 광자선의 품질관리를 위해 사용하는 TLD의 광자선 선질에 대한 에너지 의존도를 몬테카를로 모사법을 사용하여 평가하였다. IAEA 선량보증사업에 이용되는 LiF TLD 및 홀더를 EGS4기반의 사용자 코드인 DOSIMETER 와 MCNP4C 몬테카를로 코드를 사용하여 기하학구조를 구성하고, Co, 4, 6,10 밑 15 MV 광자선을 시뮬레이션하였다. DOSIMETER계산 결과를 통해 TLD의 에너지 보정인자가 실험 데이터와 일치함을 확인할 수 있었으며, 이와 별도로 캡슐에 의한 교란량도 무시할 수 없음을 발견하였다.

  • PDF

A Study on the Effect of Field Shaping on Dose Distribution of Electron Beams (전자선의 선량분포에 있어서 Field Shaping의 효과에 관한 연구)

  • Kang, Wee-Saing;Cho, Moon-June
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.165-172
    • /
    • 1986
  • In electron therapy, lead cutout or low-melting alloy block is used for shaping the field. Material for shaping electron field affects the output factor as wet 1 as the collimation system. The authors measured the output factors of electron beams for shaped fields from Clinac-18 using ionization chamber of Farmer type in polystyrene phantom. They analyzed the parameters that affect the output factors. The output factors of electron beams depend on the incident energy, collimation system and size of shaped field. For shaped field the variation of output factor for the field size (A/P) has appearence of a smooth curve for all energy and all applicator collimator combination. The output factors for open field deviate from the curves for shaped fields. An output factor for a given field can be calculated by equivalent field method such as A/P method, if a combination of applicator and collimator is fixed.

  • PDF

The Dosimetric Data of 10 MV Linear Accelerator Photon Beam for Total Body Irradiation (전신 방사선조사를 위한 10MV 선형가속기의 선량측정)

  • Ahn Sung Ja;Kang Wee-Saing;Park Seung Jin;Nam Taek Keun;Chung Woong Ki;Nah Byung Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.225-232
    • /
    • 1994
  • Purpose : This study was to obtain the basic dosimetric data using the 10 MV X-ray for the total body irradiation. Materials and Methods : A linear accelerator photon beam is planned to be used as a radiation source for total body irradiation (TBI) in Chonnam University Hospital. The planned distance from the target to the midplane of a patient is 360cm and the maximum geometric field size is 144cm x 144cm. Polystyrene phantom sized $30{\times}30{\times}30.2cm^3$ and consisted of several sheets with various thickness, and a parallel plate ionization chamber were used to measure surface dose and percent depth dose (PDD) at 345cm SSD, and dose profiles. To evaluate whether a beam modifier is necessary for TBI, dosimetry in build up region was made first with no modifier and next with an 1cm thick acryl plate 20cm far from the polystyrene phantom surface. For a fixed sourec-chamber distance, output factors were measured for various depth. Results : As any beam modifier was not on the way of radiation of 10MV X-ray, the $d_{max}$ and surface dose was 1.8cm and $61\%$, respectively, for 345cm SSD. When an 1cm thick acryl plate was put 20cm far from polystyrene phantom for the SSD, the $d_{max}$ and surface dose were 0.8cm and $94\%$, respectively. With acryl as a beam spoiler, the PDD at 10cm depth was $78.4\%$ and exit dose was a little higher than expected dose at interface of exit surface. For two-opposing fields for a 30cm phantom thick phantom, the surface dose and maximum dose relative to mid-depth dose in our experiments were $102.5\%$ and $106.3\%$, respectively. The off-axis distance of that point of $95\%$ of beam axis dose were 70cm on principal axis and 80cm on diagonal axis. Conclusion: 1. To increase surface dose for TBI by 10MV X-ray at 360cm SAD, 1cm thick acrylic spoiler was sufficient when distance from phantom surface to spoiler was 20cm. 2. At 345cm SSD, 10MV X-ray beam of full field produced a satisfiable dose uniformity for TBI within $7\%$ in the phantom of 30cm thickness by two-opposing irradiation technique. 3. The uniform dose distribution region was 67cm on principal axis of the beam and 80cm on diagonal axis from beam axis. 4. The output factors at mid-point of various thickness revealed linear relation with depth, and it could be applicable to practical TBI.

  • PDF

Evaluation of Absorbed Dose and Skin Dose with MDCT Using Ionization Chamber and TLD (이온 전리함 및 TLD 법을 이용한 Multi-Detector Computed Tomography의 흡수선량 및 체표면 선량 평가)

  • Jeon, Kyung Soo;Oh, Young Kee;Baek, Jong Geun;Kim, Ok Bae;Kim, Jin Hee;Choi, Tae Jin;Jeong, Dong Hyeok;Kim, Jeong Kee
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • Recently, the uses of Multi-Detector Computed Tomography (MDCT) for radiation treatment simulation and planning which is used for intensity modulated radiation therapy with high technique are increasing. Because of the increasing uses of MDCT, additional doses are also increasing. The objective of this study is to evaluate the absorbed dose of body and skin undergoing in MDCT scans. In this study, the exposed dose at the surface and the center of the cylindrical water phantom was measured using an pencil ionization chamber, 30 cc ionization chamber and TL Powder. The results of MDCT were 31.84 mGy, 33.58 mGy and 32.73 mGy respectively. The absorbed dose at the surface showed that the TL reading value was 33.92 mGy from MDCT. These results showed that the surface dose was about 3.5% from the MDCT exposure higher than a dose which is located at the center of the phantom. These results mean that the total exposed dose undergoing MDCT 4 times (diagnostic, radiation therapy planning, follow-up et al.), is about 14 cGy, and have to be considered significantly to reduce the exposed dose from CT scan.

The evaluation of dose of TSEI with TLD and diode dector of the uterine cervix cancer (열형광선량계와 반도체검출기를 이용한 전신피부전자선조사의 선량평가)

  • Je Young Wan;Na Keyung Su;Yoon IL Kyu;Park Heung Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.57-71
    • /
    • 2005
  • Purpose : To evaluate radiation dose and accuracy with TLD and diode detector when treat total skin with electron beam. Materials and Methods : Using Stanford Technique, we treated patient with Mycosis Fungoides. 6 MeV electron beam of LINAC was used and the SSD was 300 cm. Also, acrylic speller(0.8 cm) was used. The patient position was 6 types and the gantry angle was 64, 90 and $116^{\circ}$. The patient's skin dose and the output were detected 5 to 6 times with TLD and diode. Result : The deviations of dose detected with TLD from tumor dose were CA $+\;6\%$, thigh $+\;8\%$, umbilicus $+\;4\%$, calf $-\;8\%$, vertex $-\;74.4\%$, deep axillae $-\;10.2\%$, anus and testis $-\;87\%$, sole $-\;86\%$ and nails shielded with 4mm lead $+4\%$. The deviations of dose detected with diode were $-4.5\%{\sim}+5\%$ at the patient center and $-1.1\%{\sim}+1\%$ at the speller. Conclusion : The deviation of total skin dose was $+\;8\%{\sim}-\;8\%$ and that deviation was within the acceptable range(${\pm}\;10\%$). The boost dose was irradiated for the low dose areas(vertex, anus, sole). The electron beam output detected at the sootier was stable. It is thought that the deviation of dose at patient center detected with diode was induced by detection point and patient position.

  • PDF

Development of a Thermoplastic Oral Compensator for Improving Dose Uniformity in Radiation Therapy for Head and Neck Cancer (두경부암 방사선치료 시 선량 균일도 향상을 위한 Thermoplastic 구강 보상체의 개발)

  • Choi, Joon-Yong;Won, Young-Jin;Park, Ji-Yeon;Kim, Jong-Won;Moon, Bong-Ki;Yoon, Hyong-Geun;Moon, Soo-Ho;Jeon, Jong-Byeong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.269-278
    • /
    • 2012
  • Aquaplast Thermoplastic (AT) is a tissue-equivalent oral compensator that has been developed to improve dose uniformity at the common boundary and around the treated area during radiotherapy in patients with head and neck cancer. In order to assess the usefulness of AT, the degree of improvement in dose distribution and physical properties were compared to those of oral compensators made using paraffin, alginate, and putty, which are materials conventionally used in dental imprinting. To assess the physical properties, strength evaluations (compression and drop evaluations) and natural deformation evaluations (volume change over time) were performed; a Gafchromic EBT2 film and a glass dosimeter inserted into a developed phantom for dose verification were used to measure the common boundary dose and the beam profile to assess the dose delivery. When the natural deformation of the oral compensators was assessed over a two-month period, alginate exhibited a maximum of 80% change in volume from moisture evaporation, while the remaining tissue-equivalent properties, including those of AT, showed a change in volume that was less than 3%. In a free-fall test at a height of 1.5 m (repeated 5 times as a strength evaluation), paraffin was easily damaged by the impact, but AT exhibited no damage from the fall. In compressive strength testing, AT was not destroyed even at 8 times the force needed for paraffin. In dose verification using a glass dosimeter, the results showed that in a single test, the tissue-equivalent (about 80 Hounsfield Units [HU]) AT delivered about 4.9% lower surface dose in terms of delivery of an output coefficient (monitor unit), which was 4% lower than putty and exhibited a value of about 1,000 HU or higher during a dose delivery of the same formulation. In addition, when the incident direction of the beam was used as a reference, the uniformity of the dose, as assessed from the beam profile at the boundary after passing through the oral compensators, was 11.41, 3.98, and 4.30 for air, AT, and putty, respectively. The AT oral compensator had a higher strength and lower probability of material transformation than the oral compensators conventionally used as a tissue-equivalent material, and a uniform dose distribution was successfully formed at the boundary and surrounding area including the mouth. It was also possible to deliver a uniformly formulated dose and reduce the skin dose delivery.

Development of a Java Compiler for Verification System of DTV Contents (DTV 콘텐츠 검증 시스템을 위한 Java 컴파일러의 개발)

  • Son, Min-Sung;Park, Jin-Ki;Lee, Yang-Sun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.1487-1490
    • /
    • 2007
  • 디지털 위성방송의 시작과 더불어 본격적인 데이터 방송의 시대가 열렸다. 데이터방송이 시작 되면서 데이터방송용 양방향 콘텐츠에 대한 수요가 급속하게 증가하고 있다. 하지만 양방향 콘텐츠 개발에 필요한 저작 도구 및 검증 시스템은 아주 초보적인 수준에 머물러 있는 것이 현실이다. 그러나 방송의 특성상 콘텐츠 상에서의 오류는 방송 사고에까지 이를 수 있는 심각한 상황이 연출 될 수 있다. 본 연구 팀은 이러한 DTV 콘텐츠 개발 요구에 부응하여, 개발자의 콘텐츠 개발 및 사업자 또는 기관에서의 콘텐츠 검증이 원활이 이루어 질수 있도록 하는 양방향 콘텐츠 검증 시스템을 개발 중이다. 양방향 콘텐츠 검증 시스템은 Java 컴파일러, 디버거, 미들웨어, 가상머신, 그리고 IDE 등으로 구성된다. 본 논문에서 제시한 자바 컴파일러는 양방향 콘텐츠 검증 시스템에서 데이터 방송용 자바 애플리케이션(Xlet)을 컴파일하여 에뮬레이팅 하거나 런타임 상에서 디버깅이 가능하도록 하는 바이너리형태의 class 파일을 생성한다. 이를 위해 Java 컴파일러는 *.java 파일을 입력으로 받아 어휘 분석과 구문 분석 과정을 거친 후 SDT(syntax-directed translation)에 의해 AST(Abstract Syntax Tree)를 생성한다. 클래스링커는 생성된 AST를 탐색하여 동적으로 로딩 되는 파일들을 연결하여 AST를 확장한다. 의미 분석과정에서는 확장된 AST를 입력으로 받아 참조된 명칭의 사용이 타당한지 등을 검사하고 코드 생성이 용이하도록 AST를 변형하고 부가적인 정보를 삽입하여 ST(Semantic Tree)를 생성한다. 코드 생성 단계에서는 ST를 입력으로 받아 이미 정해 놓은 패턴에 맞추어 Bytecode를 출력한다.ovoids에서도 각각의 점들에 대한 선량을 측정하였다. SAS와 SSAS의 직장에 미치는 선량차이는 실제 임상에서의 관심 점들과 가장 가까운 25 mm(R2)와 30 mm(R3)거리에서 각각 8.0% 6.0%였고 SAS와 FWAS의 직장에 미치는 선량차이는 25 mm(R2) 와 30 mm(R3)거리에서 각각 25.0% 23.0%로 나타났다. SAS와 SSAS의 방광에 미치는 선량차이는 20 m(Bl)와 30 mm(B2)거리에서 각각 8.0% 3.0%였고 SAS와 FWAS의 방광에 미치는 선량차이는 20 mm(Bl)와 30 mm(B2)거리에서 각각 23.0%, 17.0%로 나타났다. SAS를 SSAS나 FWAS로 대체하였을 때 직장에 미치는 선량은 SSAS는 최대 8.0 %, FWAS는 최대 26.0 %까지 감소되고 방광에 미치는 선량은 SSAS는 최대 8.0 % FWAS는 최대 23.0%까지 감소됨을 알 수 있었고 FWAS가 SSAS 보다 차폐효과가 더 좋은 것으로 나타났으며 이 두 종류의 shielded applicator set는 부인암의 근접치료시 직장과 방광으로 가는 선량을 감소시켜 환자치료의 최적화를 이룰 수 있을 것으로 생각된다.)한 항균(抗菌) 효과(效果)를 나타내었다. 이상(以上)의 결과(結果)로 보아 선방활명음(仙方活命飮)의 항균(抗菌) 효능(效能)은 군약(君藥)인 대황(大黃)의 성분(成分) 중(中)의 하나인 stilbene 계열(系列)의 화합물(化合物)인 Rhapontigenin과 Rhaponticin의 작용(作用)에 의(依)한 것이며, 이는 한의학(韓醫學) 방제(方劑) 원리(原理)인 군신좌사(君臣佐使) 이론(理論)에서 군약(君藥)이 주증(主症)에 주(主)로 작용(作用)하는 약물(藥物)이라는 것을 밝혀주는 것이라고

Measurement of Electron Beam Output for the Prototype Compact Linac (콤팩트 전자 선형가속기 시작품의 출력측정에 관한 연구)

  • Kim, Sung-Woo;Kang, Sang Koo;Rhee, Dong Joo;Lim, Heuijin;Lee, Manwoo;Yi, Jungyu;Lee, Mujin;Yang, Kwangmo;Ro, Tae Ik;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • The C-band compact linear accelerator (linac) is being developed at Dongnam Institute of radiological & Medical Sciences (DIRAMS) for medical and industrial applications. This paper was focused on the output measurement of the electron beam generated from the prototype electron linac. The dose rate was measured in unit of cGy/min per unit pulse frequency according to the IAEA TRS-398 protocol. Exradin-A10 Markus type plane parallel chamber used for the measurement was calibrated in terms of dose to water at the reference depth in water. The beam quality index ($R_{50}$) was determined by the radiochromic film with a solid water phantom approximately due to low energy electrons. As a result, the determined electron beam output was $17.0cGy/(min{\cdot}Hz$. The results were used to monitor the accelerator performance during the development procedure.

Quality Assurance Program of Electron Beams Using Thermoluminescence Dosimetry (열형광선량계를 이용한 전자선 품질보증 프로그램에 관한 연구)

  • Rah Jeong-Eun;Kim Gwe-Ya;Jeong Hee-Kyo;Shin Dong-Oh;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.62-69
    • /
    • 2005
  • The purpose of this study has been performed to investigate the possibility of external audit program using thermoluminescence dosimetry for electron beam in korea. The TLD system consists of LiF powder, type TLD-700 read with a PCL 3 reader. In order to determine a calibration coefficient of the TLD system, the reference dosimeters are irradiated to 2 Gy in a $^{60}CO$ beam at the KFDA The irradiation is performed under reference conditions is water phantom using the IAEA standard holder for TLD of electron beam. The energy correction factor is determined for LiF powder irradiated of dose to water 2 Gy in electron beams of 6, 9, 12, 16 and 20 MeV (Varian CL 2100C). The dose is determined according to the IAEA TRS-398 and by measurement with a PTW Roos type plane-parallel chamber. The TLD for each electron energy are positioned in water at reference depth. In this study, to verify of the accuracy of dose determination by the TLD system are performed through a 'blind' TLD irradiation. The results of blind test are $2.98\%,\;3.39\%\;and\;0.01\%(1\sigma)$ at 9, 16, 20 MeV, respectively. The value generally agrees within the acceptance level of $5\%$ for electron beam. The results of this study prove the possibility of the TLD quality assurance program for electron beams. It has contributed to the improvement of clinical electron dosimetry in radiotherapy centers.

  • PDF