• Title/Summary/Keyword: 축 하중

Search Result 652, Processing Time 0.022 seconds

Seismic Fragility Evaluation of Surface Facility Structures in Intermediate-Low Level Radioactive Waste Repository (중.저준위 방사성폐기물 처분장의 지상시설에 대한 지진 취약도 평가)

  • Park, Jun-Hee;Kim, Min-Kyu;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2012
  • Since a seismic exceeding design load can result in exposing radioactive material during disposal process of radioactive wastes, the repository should be designed with enough seismic margin. In this paper, a seismic fragility analysis was performed to evaluate the seismic capacity of surface facility structures. According to the analysis results, since inspection & store facility and radioactive waste facility have a rectangle geometry, the seismic capacity was differently presented about 23%~43% according to the axis of structures. The HCLPF capacity of inspection & store facility and radioactive waste facility was 0.52g and 0.93g, respectively. And it was observed that seismic capacity of radioactive waste facility was similar to that of a containment for nuclear power plants.

A Study on Shear Strength Test for FRP Girder of Filled Concrete (콘크리트 충진 FRP 거더의 전단재하 실험에 관한 연구)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Kim, Woo-Jong;Kim, Hoi-Ok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.365-373
    • /
    • 2008
  • Fiber Reinforced Polymer, FRP has a light weight, a high tensile strength based on design, non-electronic, non-magnetic, and rust-resistant feature, etc and many researches are being conducted recently on FRP in the construction area. Among them, GFRP (Glass Fiber Reinforced Polymer) is excellent in price competitiveness and is widely being used. However, since GFRP has a relative low modulus of elasticity and causes excessive deflection, the section must be large to be used as a structural component and an investigative review must be carried out in design to set the limit for deflection by the use load. Therefore, in order to solve the mentioned technical problems, this study suggested a section of a module form such that application of a large-scale section is possible. Also, to secure the low rigidity of FRP, this study developed a new FRP+ concrete composite girder form that confined the concrete. To identify the structural movement of the developed FRP+ concrete composite girder, shear strength test was carried out.

Structural Performance of Y Type Plate Connection between Circular CFT Column and H Shape Steel Beam (Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부의 구조성능)

  • Jo, Hyun-Kook;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.112-118
    • /
    • 2015
  • These days, there are lots of skyscrapers being constructed in downtown areas. However, it requires columns which have a way heavier load. and far more extensive cross sections of column as well. Therefore, it is hard to lay the foundation in downtown areas. This being the case, composite columns such as CFT column are primarily being used. However, CFT column is occurred of difficult beam-column connection development and lower performance since CFT column is closed cross-section. Especially, the result of the study concerning development of connection details with CFT column and exterior diaphragms are very low in current state. In this study, through developing CFT column-H shape steel beam applicating Y shape plate, set width and depth of Y shape plate which affect structural performance of connection details applicating Y shape plate as main variables, and evaluate structural performance through experiments. And also, design Y shape plate used at experiments as setting allowable stress for tension suggested at design criteria lower than axial force of tension side flange connected Y shape plate, through shape of destruction, verify the structural safety and performance of Y shape plate.

Applicability of Solidified Soil as a Filling Materials in the Drilling of the Bored-precast Pile (매입말뚝 시공시 현장토를 활용한 고화처리 충전재의 현장 적용성 평가)

  • Kim, Khi-Woong;Park, Jeong-Jun;Han, Byung-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.21-29
    • /
    • 2014
  • The use of filling material based on cement paste is inefficient at field construction because it needs a lot of the charging mass. In addition, it has environmental problem according to the large amount of cement use because its strength is also larger than criterion. The excavated soil with stabilizer can be used as the filling materials when the bored pile is constructed. Therefore, this paper describes field application of solidified soil for economical efficiency and environment-friendly. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. As results, the flowability, segregation and bleeding, and bond strength of filling materials was a good performance than that of the existing cement paste. But the skin friction of pile by PDA was slightly decreased than that of the existing cement paste. However, as pile filling materials, and in terms of economics and environment, the applicability of filling material is considered very effective.

Behavior of H-Type Steel Pile Under Axial Lond in Cohesionless Soils (사질토 지반에서 H-형 강말뚝의 축방향 거동)

  • Hong Sa-Myun;Lee Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.5-12
    • /
    • 2005
  • In early days, to analyze the behavior of single pile under axial load, many assumptions were made and field tests were performed. But in recent days, the development of computers led the use of the numerical analysis resulting in more realistic and correct results. The numerical methods are classified into Load Transfer Method and Elastic Solid Approach. In this study a numerical program applying t-z model to Load Transfer Method suggested by Coyle & Reese was developed. And another finite difference program using matrix based on this load transfer was developed. As a result, it is found that the values of the F.D.M. were similar to the values measured in-situ.

A Study on Bearing Capacity Reinforcement for PHC Pile Foundation Using Post-grouting (그라우팅 기법을 활용한 PHC 파일 기초의 지지력 증강 효과 연구)

  • Yoo, Min-Taek;Lee, Su-Hyung;Kim, Seok-Jung;Choi, Yeong-Tae;Park, Jeongjun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.17-25
    • /
    • 2017
  • In this research, post grouting methods were applied on PHC piles, and static load tests were conducted to confirm the effect of post grouting on bearing capacity enhancement of PHC piles. Grouting pressures of 1.9 MPa and 3.5 MPa were applied, and bearing capacities of grouted piles were compared with that of non-grouted pile. From the static load test results, the bearing capacities of grouted piles were about 3 times higher than that of non-grouted pile. In addition, the design efficiency (allowable bearing capacity/nominal bearing capacity) increased from 32% to 97% after post grouting, and the axial stiffness of piles also increased by about 1.3 times per grouting pressure.

Numerical Analysis of Shear Stresses in Framed Tube Structures with Internal Tube(s) (내부튜브가 있는 골조 튜브 구조물의 전단응력에 대한 수치해석)

  • Lee, Kang-Kun;Lee, Lee-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.511-521
    • /
    • 2002
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures arc analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The numerical analysis of shear stress is based on the mathematical analogy in conjunction with the elastic theory By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of lineal functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. Previous studies for axial stresses and shear lag phenomenon are further developed lot the numerical analysis of shear stresses in the tubes. The simplicity and accuracy of the proposed method are demonstrated through the solutions of throe numerical examples.

A Study of Wear Behavior for Sealing Graphite at Elevated Temperature (씰링 그라파이트의 고온 마모 거동에 관한 연구)

  • Kim, Yeonwook;Kim, Jaehoon;Yang, Hoyoung;Park, Sunghan;Lee, Hwankyu;Kim, Bumkeun;Lee, Seungbum;Kwak, Jaesu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.113-120
    • /
    • 2013
  • Graphite is commonly used as a solid lubricant leading to low friction coefficient and abrasion. In this study, wear behavior of sealing graphite(HK-6) at elevated temperature was evaluated. Reciprocating wear test was carried out as wear occurred graphite as a seal(HK-6) is positioned between the liner and driving shaft. Variables which are temperature, sliding speed and contact load are set. This study suggest optimized environment conditions through the wear properties of graphite.

Assessment of Steam Generator Tubes with Multiple Axial Through-Wall Cracks (축방향 다중관통균열이 존재하는 증기발생기 세관 평가법)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1741-1751
    • /
    • 2004
  • It is commonly requested that the steam generator tubes wall-thinned in excess of 40% should be plugged. However, the plugging criterion is known to be too conservative for some locations and types of defects and its application is limited to a single crack in spite of the fact that the occurrence of multiple through-wall cracks is more common in general. The objective of this research is to propose the optimum failure prediction models for two adjacent through-wall cracks in steam generator tubes. The conservatism of the present plugging criteria was reviewed using the existing failure prediction models for a single crack, and six new failure prediction models for multiple through-wall cracks have been introduced. Then, in order to determine the optimum ones among these new local or global failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two adjacent through-wall cracks in thin plate were carried out. Thereby, the reaction force model, plastic zone contact model and COD (Crack-Opening Displacement) base model were selected as the optimum ones for assessment of steam generator tubes with multiple through-wall cracks. The selected optimum failure prediction models, finally, were used to estimate the coalescence pressure of two adjacent through-wall cracks in steam generator tubes.

Three Dimensional Buckling Analysis of Continuous Welded Rail Track Under Thermal Load (온도하중을 고려한 장대레일 궤도의 3차원 좌굴 거동)

  • 강준석;임남형;양신추;강영종
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.471-478
    • /
    • 2000
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths. The joints cause many drawbacks in the track and lead to signeficant maintenance cost. so, railroad engineers became interested in eliminating joints. Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. but, in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal loads. In this paper, firstly, 3-D CWR track model and CWRB program exactly considering the influence of tie are developed far linear static and buckling analysis using finite element method. Characteristics of CWR track model are using 7-dofs beam element as rail, Offset technic exactly considering centroid axies difference of track components(rail, rail-pad-fastener, tie), and Thermal gradient considering thermal difference of top flange and bottom flange in rail section.. second,, Through the static and linear buckling analysis by CWRB, Influences of various track components (rail, ballast, fastener, tie and so on..) on CWR track behavior and stability was characterized.

  • PDF