• Title/Summary/Keyword: 축차 2 점법

Search Result 6, Processing Time 0.021 seconds

A Study on the Measurement of Roundness Profile for Rotating Object Using Two Points in Succession Measuring Method (축차 2점법을 이용한 회전체의 진원도 프로파일 측정에 관한 연구)

  • Lee, Min-Ki;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1029-1034
    • /
    • 2010
  • In this paper, we present the roundness profile and run-out error measurement for a rotating shaft. The devices for measuring the roundness require a precision rotation table which is used as a reference to obtain the circular profile. Therefore, the roundness measuring system is expensive and requires precision manufacturing. The two-point method for succession measurement has been used to obtain a linear profile or used in straightness measurement using two displacement measuring devices. In this paper, the method is used for measuring the circular profile of a rotating shaft. A method to remove the vibration of the shaft, i.e., the run-out, is used, and the original circular profile is obtained from the measured raw data that excludes the run-out error of the rotating shaft. This method will be useful for obtaining the precise circular profile without using a precision reference circular artifact.

Study on the Estimation of Duncan & Chang Model Parameters-initial Tangent Modulus and Ultimate Deviator Stress for Compacted Weathered Soil (다짐 풍화토의 Duncan & Chang 모델 매개변수-초기접선계수와 극한축차응력 산정에 관한 연구)

  • Yoo, Kunsun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.47-58
    • /
    • 2018
  • Duncan & Chang(1970) proposed the Duncan-Chang model that a linear relation of transformed stress-strain plots was reconstituted from a nonlinear relation of stress-strain curve of triaxial compression test using hyperbolic theory so as to estimate an initial tangent modulus and ultimate deviator stress for the soil specimen. Although the transformed stress-strain plots show a linear relationship theoretically, they actually show a nonlinearity at both low and high values of strain of the test. This phenomenon indicates that the stress-strain curve is not a complete form of a hyperbola. So, if linear regression analyses for the transformed stress-strain plot are performed over a full range of strain of a test, error in the estimation of their linear equations is unavoidable depending on ranges of strain with non-linearity. In order to reduce such an error, a modified regression analysis method is proposed in this study, in which linear regression analyses for transformed stress-strain plots are performed over the entire range of strain except the range the non-linearity is shown around starting and ending of the test, and then the initial tangent modulus and ultimate deviator stresses are calculated. Isotropically consolidated-drained triaxial compression tests were performed on compacted weathered soil with a modified Proctor density to obtain their model parameters. The modified regression analyses for transformed stress-strain plots were performed and analyzed results are compared with results estimated by 2 points method (Duncan et al., 1980). As a result of analyses, initial tangent moduli are about 4.0% higher and ultimate deviator stresses are about 2.9% lower than those values estimated by Duncan's 2 points method.

Parallelism and Straightness Measurement of a Pair of Rails for Ultra Precision Guide-ways (초정밀 안내면 레일의 평행도 및 진직도 동시측정)

  • Hwang, Joo-Ho;Park, Chun-Hong;Wei, Gao;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.117-123
    • /
    • 2007
  • This paper describes a three-probe system that can be used to measure the parallelism and straightness of a pair of rails simultaneously. The parallelism is measured using a modified reversal method, while the straightness is measured using a sequential two-point method. The measurement algorithms were analyzed numerically using a pair of functionally defined rails to validate the three-probe system. Tests were also performed on a pair of straightedge rails with a length of 250 mm and a maximum straightness deviation of $0.05{\mu}m$, as certified by the supplier. The experimental results demonstrated that the parallelism-measurement algorithm had a cancellation effect on the probe stage motion error. They also confirmed that the proposed system could measure the slope of a pair of rails about $0.06{\mu}rad$. Therefore, by combining this technique with a sequential differential method to measure the straightness of the rails simultaneously, the surface profiles could be determined accurately and eliminate the stage error. The measured straightness deviation of each straight edge was less than $0.05{\mu}m$, consistent with the certified value.

Compensation of Five DOF Motion Errors in a Ultra Precision Hydrostatic Table Using the Active Controlled Capillaries (능동제어모세관을 이용한 초정밀 유정압테이블의 5 자유도 운동 오차 보정)

  • Park C.H.;Oh Y.J.;Lee H.;Lee D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.769-772
    • /
    • 2005
  • Five DOF motion errors of a hydrostatic bearing table driven by the coreless type linear motor were compensated utilizing the active controlled capillaries in this study. Horizontal linear motion and yaw error were simultaneously compensated using two active controlled capillaries and vertical linear motion, pitch and yaw error were also simultaneously compensated using three active controlled capillaries. By the compensation, horizontal linear motion accuracy and yaw were improved from 0.16 ${\mu}m$ and 1.96 arcsec to 0.02 ${\mu}m$ and 0.03 arcsec. Vertical linear motion accuracy, pitch and roll were also largely improved from 0.18 ${\mu}m$, 2.26 arcsec and 0.14 arcsec upto 0.03 ${\mu}m$, 0.07 arcsec and 0.02 arcsec. The compensated motion errors were within the range of measuring repeatability which was ${\pm}0.02\;{\mu}m$ in the linear motion and ${\pm}0.05$ arcsec in the angular motion. From these results, it is found that the motion error compensation method utilizing the active controlled capillaries are very effective to improve the five motion accuracies of the hydrostatic bearing tables.

  • PDF

Measurement of Five DOF Motion Errors in the Ultra Precision Feed Tables (초정밀 이송테이블의 5 자유도 운동오차 측정)

  • Oh Yoon Jin;Park Chun Hong;Hwang Joo Ho;Lee Deug Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.135-141
    • /
    • 2005
  • Measurement of five DOF motion errors in a ultra precision feed table was attempted in this study. Yaw and pitch error were measured by using a laser interferometer and roll error was measured by using the reversal method. Linear motion errors in the vertical and horizontal directions were measured by using the sequential two point method. In this case, influence of angular motion errors was compensated by using the previously measured ones by the laser interferometer and the reversal method. The capacitive type sensors and an optical straight edge were used in the reversal method and the sequential two point method. Influence of thermal deformation on sensor jig was investgated and minimized by the periodic measurement according to the variation of room temperature. Deviation of gain between sensors was also compensated using the step response data. 5 DOF motion errors of a hydrostatic table driven by the linear motor werer tested using the measurement method. In the horizontal direction, measuring accuracies for the linear and angular motion were within ${\pm}0.02\;{\mu}m$ and ${\pm}0.04$ arcsec, respectively. In the vertical direction, they were within ${\pm}0.02{\mu}m$ and ${\pm}0.05$ arcsec. From these results, it was found that the introduced measurement method was very effective to measure 5 DOF motion errors of the ultra precision feed tables.