• Title/Summary/Keyword: 축전지의 잔존용량

Search Result 5, Processing Time 0.022 seconds

State of Charge Calculation Using a Differential Amplifier On the Batteries (차동 증폭회로를 적용한 축전지 잔존용량산정)

  • Jo, Kyu-Pan;Moon, Chae-Joo;Kim, Tae-Gon;Chae, Sung-Yeol;Jeong, Moon-Seon;Lee, Kyung-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.557-558
    • /
    • 2011
  • 전기자동차의 축전지 관리 시스템(BMS : Battery Management System)의 잔존용량(SOC : State Of Charge)산정에는 Ah 측정법, 비중측정법, 전압측정법 등이 있다. 기존 전압 측정법의 경우 측정 전압을 프로세서에서 직접 처리하기 때문에 축전지의 미세한 전압 변화를 측정하지 못하여 잔존 용량 산정시 세밀한 계산에 어려움이 따른다. 본 논문에서는 축전지의 전압 측정 시 프로세서 전단에 전압의 부분 증폭회로를 추가하여 축전지의 미세한 전압변화를 증폭하여 측정하는 방법을 제안 하였다. 니켈수소전지를 대상으로 실험한 결과 충전 중 기존 전압측정법은 1.431V, 1.436V, 1.441V가 측정 되었을 때의 잔존 용량은 84%로 일정하였다. 같은 전압변화에서 부분증폭회로를 적용한 충전전압은 1.4297V, 1.4303V ~ 1.4352V, 1.4358V로 측정 되었으며, 그에 따른 잔존용량은 84% ~ 85%로 기존 전압 측정법 보다 약 9 ~ 10배 정도 세밀하게 측정 되었다. 제안한 방법을 통한 실험으로 제안된 방법이 기존 전압 측정법보다 세밀한 전압 측정 및 SOC산정이 가능함을 확인 하였다.

  • PDF

Over Discharging Protection system of Leak Acid Battery for Automatic Water Sanitizer Device (소독약 자동 주입장치용 납축전지의 과 방전 방지시스템)

  • Bae, Cherl-O;Park, Young-San
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.161-165
    • /
    • 2012
  • It is one of the most important to protect the battery over charging for stable use and to extend the life of battery which occurs with repeated charging and discharging. Various research have been studied to know the state of health, and in this paper the terminal voltage of battery is measured to calculate the state of charge simply. The circuit used comparator is designed and built not to fall under the specific voltage of battery. The designed circuit board is attached to the automatic water sanitizer device with a solar power system. The system is located in the water tank where there is not water and electric service, and confirmed that the state of working is good.

Design remaining capacity calculation system of a nickel-cadmium battery by using fuzzy logic (퍼지로직을 이용한 니켈-카드뮴 축전지의 잔존용량 산출 알고리즘 제안)

  • Jang, Woong-Sung;Jeon, Sun-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.355-357
    • /
    • 2004
  • In this paper, to calculate accurate remaining volume, it presents how to figure out nickel-cadmium battery algorithm. A nickel-cadmium battery has widely been used in industrial field and to military. Recent high demands on the battery caused 'How to calculate accurate remaining volume is very important task to be solved. In this paper, it says it is useful using the terminal voltage change of the resistance that can be connected with the battery and the differentiation of the terminal voltage to calculate remaining volume of nickel-cadmium battery. And these can be used for volume inference data so that it is fuzzy based system which can be helpful to inference the remaining volume by the resistance of terminal voltage change. Because of electrochemical complexity, the volume calculating system is inferencing undirectly by experimentally built DB where as current the existing volume models are suffering to be adapted.

  • PDF

The Use of Computer Simulation in the Selfdischarge Evaluation of Ni/MH Battery for Electric Vehicle (전기자동차용 Ni/MH Battery의 자기방전율 평가를 위한 컴퓨터 시뮬레이션의 활용)

  • Jung Do Yang;Kim Myung Gyu;Park Seong Yong;Kim Sun Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.53-57
    • /
    • 2001
  • When an EV is parked for a long period time, the battery capacity naturally decreases due to selfdischarge. Therefore, this effect must be considered for the accurate measurement of the state of charge of EV battery. Battery selfdischarge simulations using the design of experiments among computer simulation methods are compared with experimental data for Ni/MH batteries for electric vehicles. The motivation is to predict the selfdischarge rate of the battery for electric vehicle at all temperature conditions and standing time when electric vehicle could be operated. We developed a general equation representing the seudischarge rate of the electric vehicle battery using design of experiments, and the equation is determined by temperature and standing time of the battery. We selected Ni/MH battery, 12 V-95 Ah, for pure electric vehicle for this study. ID develop the equation using design of experiments we selected temperature range of $-20^{\circ}~30^{\circ}C$ and standing time of 1 day$\~15$ days. We conducted several selfdischarge tests of Ni/MH battery to verify the integrity of the equation. The results showed that the computation values were in good agreement with experimental data.

Development of Battery Management System for Electric Vehicle Applications of Ni/MH Battery

  • Jung Do Yang;Lee Baek Haeng;Kim Sun Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.152-159
    • /
    • 2001
  • Electric vehicle performance is very dependent on traction batteries. For developing the electric vehicles with high performance and good reliability, the traction batteries have to be managed to get maximum performance under various operating conditions. The enhancement of the battery performance can be accomplished by implementing battery management system (BMS) that plays important roles of optimizing the control mechanism of charge and discharge of the batteries as well as monitoring battery status. In this study the battery management system has been developed for maximizing the use of Ni/MH batteries in electric vehicle. This system provides several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state of charge, safety and thermal management. The BMS was installed in and tested using the DEV5-5 electric vehicle developed by Daewoo Motor Co. and Institute for Advanced Engineering in Korea. The 18 modules of Panasonic Ni/MH battery, 12 V-95 Ah, were used in the DEV5-5. The high accuracy within the range of $3\%$ and the good reliability were shown in the test results. The BMS can also improve the performance and cycle life of Ni/MH battery pack as well as the reliability and safety of the electric vehicles (EV).