• Title/Summary/Keyword: 축류

Search Result 486, Processing Time 0.027 seconds

A Study of in-vitro Performances of the Intracardiac Axial Flow Pump (심장내 이식형 축류 혈액펌프의 in-vitro특성에 관한 연구)

  • 김동욱;삼전부호희
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 1998
  • The intracardiac axial flow pump has been developed This device has several advantages: it fits well anatomically, its blood-contacting surface is small, and it is implanted as easily as an artificial heart valve replacement. The axial flow pump consists of an impeller and a motor, both of which are encased in a housing. Two types of impeller with 4 vanes and 6 vanes are used. Sealing of the motor shaft is achieved by means of a ferrofluidic seal. A flow of 5$\ell$/min was obtained at a differential pressure of 100mmHg with a motor speed of 7091rpm with the 4-vane impeller and 6402rpm with the 6-vane impeller. Sealing was kept against a pressure of 150mmHg at 7000rpm with the 4-vane impeller and 6402rpm with the 6-vane impeller. Sealing was kept against a pressure of 150mmHg at 7000rpm over 24 hours. The index of hemolysis was 0.056 with the 4-vane impeller and 0.214 with the 6-vane impeller. The intracardiac axial flow pump is a very promising circulatory support.

  • PDF

A Study of the One-Stage Axial Turbine Performance with Various Axial Gap Distances between the Stator and Rotor (정.동익 축방향 간격에 따른 단단 축류터빈의 성능시험에 관한 연구)

  • Kim, Dong-Sik;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.99-105
    • /
    • 2002
  • The performance test of an axial-type turbine is carried out with various axial gap distances between the stator and rotor. The turbine is operated at the low pressure and speed, and the degree of reaction is 0.373 at the mean radius. The axial-type turbine consists of ons-stage and 3-dimensional blades. The chord length of rotor is 28.2mm and mean diameter of turbine is 257.56mm. The power of turbo-blower for input power is 30kW and mass flow rate is $340m^3$/min at 290mmAq static-pressure. The RPM and output power are controlled by a dynamometer connected directly to the turbine shaft. The axial gap distances are changed from a quarter to three times of stator axial chord length, and performance curves are obtained with 9 different axial gaps. The efficiency varies about 8% of its peak value due to the variation of axial gap on the same non-dimensional mass flow rate and RPM, and experimental results show that the optimum axial gap is 1.6-1.9Cx.

Modeling of Left Ventricular Assist Device and Suction Detection Using Fuzzy Subtractive Clustering Method (퍼지 subtractive 클러스터링 기법을 이용한 좌심실보조장치 모델링 및 흡입현상 검출)

  • Park, Seung-Kyu;Choi, Seong-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.500-506
    • /
    • 2012
  • A method to model left ventricular assist device (LVAD) and detect suction occurrence for safe LVAD operation is presented. An axial flow blood pump as a LVAD has been used to assist patient with heart problems. While an axial flow blood pump, a kind of a non-pulsatile pump, has relative advantages of small size and efficiency compared to pulsatile devices, it has a difficulty in determining a safe pump operating condition. It can show different pump operating statuses such as a normal status and a suction status whether suction occurs in left ventricle or not. A fuzzy subtractive clustering method is used to determine a model of the axial flow blood pump with this pump operating characteristic and the developed pump model can provide blood flow estimates before and after suction occurrence in left ventricle. Also, a fuzzy subtractive clustering method is utilized to develop a suction detection model which can identify whether suction occurs in left ventricle or not.

Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor (정익 슈라우드 공기분사가 단단 천음속 축류압축기의 공력성능에 미치는 영향)

  • Dinh, Cong-Truong;Ma, Sang-Bum;Kim, Kwang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.9-19
    • /
    • 2017
  • In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.

Optimization of Parallel Code for Noise Prediction in an Axial Fan Using MPI One-Sided Communication (MPI 일방향통신을 이용한 축류 팬 주위 소음해석 병렬프로그램 최적화)

  • Kwon, Oh-Kyoung;Park, Keuntae;Choi, Haecheon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.3
    • /
    • pp.67-72
    • /
    • 2018
  • Recently, noise reduction in an axial fan producing the small pressure rise and large flow rate, which is one type of turbomachine, is recognized as essential. This study describes the design and optimization techniques of MPI parallel program to simulate the flow-induced noise in the axial fan. In order to simulate the code using 100 million number of grids for flow and 70,000 points for noise sources, we parallelize it using the 2D domain decomposition. However, when it is involved many computing cores, it is getting slower because of MPI communication overhead among nodes, especially for the noise simulation. Thus, it is adopted the one-sided communication to reduce the overhead of MPI communication. Moreover, the allocated memory and communication between cores are optimized, thereby improving 2.97x compared to the original one. Finally, it is achieved 12x and 6x faster using 6,144 and 128 computing cores of KISTI Tachyon2 than using 256 and 16 computing cores for the flow and noise simulations, respectively.

Experimental Study on the Aerodynamic Characteristics of a Two-Stage and a Counter-Rotating Axial Flow Fan (2단 축류홴과 엇회전식 축류홴의 공력특성에 관한 실험적 연구)

  • Cho, Jin-Soo;Cho, Lee-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1281-1292
    • /
    • 2001
  • Experiments were done for the comparison of performance and flow characteristics between a two -stage axial flow fan and a counter-rotating axial flow fan. Each stage of the two -stage axial flow fan used fur the present study has an eight bladed rotor and thirteen slater blades. The front and the rear rotor of the counter - rotating axial flow fan have eight blades each and are driven by coaxial counter ro latins shafts through a gearbox located between the rear rotor and the electric motor. Both of the two axial fan configurations have identical rotor blades and the same operating condition fur the one -to-one comparison of the two. Performance curves of the two configurations were obtained and compared by varying the blade pitch angles and axial gaps between the blade rows. The fan characteristic curves were obtained following the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fa n flow characteristics were measured using a five-hole probe by a non-nulling method. The velocity profiles between the hub and tip of the fans were measured and analyzed at the particular operating condition s of peak efficiency, minimum and maximum pressure coefficients. The peak efficiency of the counter-rotating axial fan was improved about 2% respectively, compared with the two stage axial fan. At the minimum pressure coefficient point of the two stage axial fan, the fan inlet flow patterns show that axial velocity highly decreased in the vicinity of the blade tip region. Also, the reverse flow took place at the blade tip.

Numerical Investigation of Effects of Tip Clearance Height on Fan Performance and Tip Clearance Flow in an Axial Fan of the Cooling Tower (냉각탑용 축류팬의 팁 간격이 팬 성능 및 틈새 유동에 미치는 영향에 관한 수치해석적 연구)

  • Oh, Keon-Je
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.44-50
    • /
    • 2012
  • 팁 간격의 크기가 냉각탑용 축류팬의 성능과 누설 유동에 미치는 영향을 조사하기 위해서 서로 다른 2가지 팁 간격을 가진 경우에 대해서 점성유동을 해석하였다. 케이싱 내에서 작동하는 축류팬 주위의 유동을 연속방정식, Navier-Stokes 방정식 등을 지배방정식으로 사용하여 수치해석 하였다. 난류유동에 나타나는 레이놀즈 응력은 ${\kappa}-{\epsilon}$ 난류모델을 사용하여 계산하였다. 전체적으로 H형 격자계를 사용하였으며, 팁 주위의 유동을 해석하기 위해서 팁 영역 주위에 부분적으로 조밀한 격자를 두었다. 팁 간격이 증가하면 누설 유동의 증가로 인한 유동 손실의 증가로 전압상승과 수력효율이 감소하였다. 팬 직경에 대한 팁 간격이 0.4%에서 1.0%로 증가하면 전압상승 값이 약 10% 정도 감소하였으며, 수력효율은 약 3% 정도 감소하였다. 팁 간격이 팁 근처 날개 주위의 압력에 미치는 영향을 보면, 팁 간격이 증가하여 누설 유동이 증가하면 흡입면과 압력면의 압력차가 전연 부근에서 감소함을 알 수 있었다. 누설 와류의 중심은 코드를 따라서 흡입면으로 부터 떨어져 나가면서 형성됨을 알 수 있었다. 누설 와류의 위치를 보면 팁 간격이 증가하면 와류 중심의 위치가 흡입면 쪽으로 이동하고, 흡입면에서 떨어진 거리도 날개 후반부에서 증가 폭이 커지는 포물선 형태로 증가함을 알 수 있었다.

Effect of Blade Angles on a Micro Axial-Type Turbine Operated in a Low Partial Admission Rate (부분분사 마이크로 축류형터빈에서의 익형각 효과에 관한 연구)

  • Cho, Soo-Yong;Cho, Bong-Soo;Cho, Chong-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.10-18
    • /
    • 2007
  • A tested micro axial-type turbine consists of two stages and its mean radius of rotor flow passage is 8.4 mm. This turbine could be applied to a driver of micro power system, and its rotational speed in the unloaded state reaches to 100,000 RPM. The performance of this system is sensitive depending on the blade angles of the rotor and stator because it is operated in a low partial admission rate, so a performance test is conducted through measuring the specific output power and the net specific output torque with various blade angles on the nozzle, stator and rotor. The experimental results show that the net specific output torque is varied by 15% by changing the rotor blade angle, and the optimal incidence angle is about $10.3^{\circ}$.

Experimental Research of Multi-Stage Axial Compressor Stability Enhancement by Air Injection (다단 축류압축기의 안정성 개선을 위한 실험적 연구)

  • Lim, Young-Cheon;Lim, Hyung-Soo;Song, Seung-Jin;Kang, Shin-Hyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.378-381
    • /
    • 2009
  • A rotating stall, an instable phenomenon of compressor, brings about reducing the pressure rise, the efficiency of compressor and a mechanical demage. In order to improve instability and extend operating range, it was performed that a stability enhancement experiment applying air injection method at the 4-stage low-speed axial compressor. The coanda nozzle was used to inject air in axial direction at rotor tip and 8 injectors were set up at regular interval at the upstream of 1st stage rotor. At 80% speed, injectors were worked before rotating stall happened. As injecting the 5.4% air of mode inception flow rate, the stability of compressor operation enhanced about 4%.

  • PDF

Numerical and Experimental Analyses of the Aerodynamic Characteristics of a Counter Rotating Axial Fan (엇회전식 축류홴의 공력 특성에 관한 전산 해석 및 실험)

  • Cho, Jin-Soo;Won, Yu-Phil;Lee, Moon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.325-337
    • /
    • 2000
  • A study was done on the numerical and experimental analyses of the aerodynamic characteristics of a counter rotating axial fan. The numerical analysis uses the frequency domain panel method developed for the aerodynamic analysis of interacting rotating systems, which is based on the unsteady lifting surface panel method. Each stage of interaction involves the solution of an isolated rotor, the interaction being done through the Fourier transform of the induced velocity field. Numerical results showed good agreements with other experimental data for single and counter rotating propeller systems. And they were compared with the experimental results of the counter rotating axial fan studied in the present paper. The performance test was carried out based on the Korean Standard (KS B 6311). It was focused on the relative efficiency increase of a counter rotating system for a single rotating one, and effects of the axial distance between the front and rear rotors on overall fan performances were investigated. As a result, it was shown that the counter rotating axial fan has the efficiency 14% higher than the single rotating one at peak efficiency points.