• Title/Summary/Keyword: 축류형 압축기

Search Result 11, Processing Time 0.025 seconds

Aerodynamic Design and Performance Prediction of Highly-Loaded 1 Stage Axial Compressor (고부하 1단 축류형 압축기 공력 설계 및 성능 예측)

  • Kang, Young-Seok;Park, Tae-Choon;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.101-104
    • /
    • 2010
  • Recently, needs for UAVs and small aircraft and small turbo jet or turbo fan engines for these air-crafts are increasing. Size and weight are the two main restrictions in small air-crafts such as UAV or VLJ propulsion system applications. Therefore, high power density is required in small size and designers come up with unconventional solutions in the design of small aero gas turbine engines. One of the solutions is the usage of highly loaded axial compressors. This paper introduces an aerodynamic design method of a highly loaded axial compressor and its review process. Numerical simulation has been carried out to assess the aerodynamic performance of the compressor.

  • PDF

Performance Assessment of MDO Optimized 1-Stage Axial Compressor (MDO 최적화 설계기법을 이용해 설계된 1단 축류형 압축기의 성능평가)

  • Kang, Young-Seok;Park, Tae-Choon;Yang, Soo-Seok;Lee, Sae-Il;Lee, Dong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.397-400
    • /
    • 2011
  • MDO Optimization for a low pressure axial compressor rotor has been carried out to improve aerodynamic performance and structural stability. Global optimized solution was obtained from an artificial neural network model with genetic algorithm. Optimized rotor model has a high blade loading near hub and near zero incidence flow angle near tip region to reduce the incidence loss and flow separation at trailing edge region. Also the rotor shape is converged to a trapezoid shape to reduce the maximum stress occurred at the root of the blade. Numerical simulation results show that rotor has 87.6% rotor efficiency and safety factor over than 3.

  • PDF

축류 압축기 기술 개발 동향

  • Song, Jae-Uk;Lee, Seong-Ryong;Lee, Sang-Eon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.61-65
    • /
    • 2009
  • 현재 선진업체들은 성능과 구조적으로 경쟁력 있는 산업용 가스터빈 압축기를 설계하기 위하여 항공기용 압축기 설계기술을 전용하고 있다. 따라서 두산중공업은 DGT-5 압축기 익형설계를 위해 항공용 익형설계에 적용되는 S-Profile 설계기술을 활용하여 설계하였으며 현재 DGT-5 압축기에 대한 1차 성능시험이 완료되어 만족할 만한 결과를 얻었다. 그리고 DGT-5 압축기는 추후 두산중공업 파생형 가스터빈 압축기의 기본압축기로 활용할 계획이다.

Preliminary Aerodynamic Design of 13:1 Pressure Ratio Axial-Centrifugal Compressor (13:1의 압축비를 갖는 축류-원심형 압축기의 기본 공력설계)

  • 김원철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.83-94
    • /
    • 2003
  • Preliminary aerodynamic design of a compressor is carried out to meet the design requirements which are pressure ratio of 13, air mass flow rate of 4 ㎏/s and rotational speed of 45,000 rpm. The compressor type is chosen as an axial-centrifugal compressor from the design requirements which is suitable for a medium power class turboprop or turboshaft engine. Its overall isentropic efficiency is estimated to be 0.796 and its surge margin to be 20% exceeding the design requirement. This paper summarizes the aerodynamic design details including the design procedures and the results of the axial -centrifugal compressor.

Experimental Research on Multi Stage Transonic Axial Compressor Performance Evaluation (다단 천음속 축류형 압축기 성능에 관한 실험적 연구)

  • Kang, Young-Seok;Park, Tae-Choon;Hwang, Oh-Sik;Yang, Soo-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.96-101
    • /
    • 2011
  • Korea Aerospace Research Institute is performing 3 stage transonic axial compressor development program. This paper introduces design step of the compressor, the performance test results and its analysis. In the fore part of the paper, aerodynamic process of the 3 stage axial compressor is presented. To satisfy both of the mass flow and pressure rise, the compressor should rotate at a high rotational speed. Therefore the transonic flow field forms in the rotor stages and it is designed with a relatively high pressure rise per stage to satisfy its design target. The compressor stage consists of 3 stages, and the bulk pressure ratio is 2.5. The first stage is burdened with the highest pressure ratio and less pressure rises occur in the following stages. Also it is designed that tip Mach number of the first rotor row does not exceed 1.3, while the maximum relative Mach number in the rotor stage is between 1.3~1.4 to increase the compressor flow coefficient. The final design has been confirmed by iterating three dimensional CFD calculations to verify design target and some design intentions. In the latter part of the paper, its performance test processes and results are presented. The performance test result shows that the overall compressor performance targets; pressure ratio and efficiency are well achieved. The stator static pressure distributions show that the blade loading is gradually increasing from the downstream of the compressor.

A Study of Windmilling Characteristics of Twin-Spool Axi-Centrifugal Turbo-Fan Engine Using an Analysis of Bypass-duct Loss (바이패스 덕트 손실 해석을 이용한 복축 혼합형 터보팬 엔진의 윈드밀 특성 연구)

  • 김민정;최성욱;노태성;임진식
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.211-214
    • /
    • 2003
  • For prediction of the windmilling performance with consideration of bypass-duct loss of the twin-spool axi-centrifugal turbo-fan engine in flight condition, this study has examined the windmilling process and the physical phenomenon of the engine parts. Also, a mixing phenomenon with air passed through the bypass-duct has been analyzed. The results of the predicted windmilling performance has been compared and analyzed using the dimensional parameters.

  • PDF

Experimental Research on Aerodynamic Instabilities in a Multi Stage Transonic Axial Compressor (다단 천음속 압축기의 유동 불안정성에 관한 실험적 연구)

  • Kang, Young-Seok;Park, Tae-Choon;Hwang, Oh-Sik;Lim, Hyung-Soo;Yang, Soo-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.12-19
    • /
    • 2012
  • This study presents unsteady and unstable characteristics of three stage transonic axial compressor, developed by Korea Aerospace Research Institute. As approaching to the unstable operating region at the 103% design speed of the compressor, a modal type stall precursor appears in front of highly loaded 3rd rotor row at first, and it propagates to the upstream. On the contrary, actual stall cell initiates from the stall precursor in front of the 1st rotor row, and it propagates to the downstream of the compressor. After the stall region reached the 3rd stage and stall cell rotates circumferentially about 360 deg, it develops to one dimensional compressor surge mode. It shows a mild surge behaviour with 3~4 Hz frequency. From the test data, it can be suggested that there is a priority to give an optimum blade loading distributions to construct a multi stage transonic axial compressor stages either to secure more stable compressor operating ranges, or to maximize the compressor efficiency.

Prestudy on Expendable Turbine Engine for High-Speed Vehicle (초고속 비행체용 소모성 터빈엔진 사전연구)

  • Kim, You-Il;Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.629-634
    • /
    • 2011
  • A prestudy on expendable turbine engine for high-speed vehicle was conducted. The two possible mission profiles were established to decide the engine requirements and Design Point, and Design Point analysis was performed with the values of design parameter which were obtained from similar class engines and technical references. The results showed that Specific Net Thrust is 2599.4 ft/s and Specific Fuel Consumption is 1.483 lb/($lb^*h$) at the flight condition of Sea Level, Mach 1.2. It was also found through the performance analysis on the two possible mission profiles that major design parameters for determining Net Thrust were Turbine Inlet Temperature for low supersonic flight speed and Compressor Exit Temperature for high supersonic flight speed. In addition, simple turbojet engine with axial compressor, straight annular combustor, axial turbine and fixed throat area converge-diverge exhaust nozzle was proposed as the configuration of simple low cost light engine.

  • PDF

Prestudy on Expendable Turbine Engine for High-Speed Vehicle (초고속 비행체용 소모성 터빈엔진 사전연구)

  • Kim, YouIl;Hwang, KiYoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • A prestudy on expendable turbine engine for high-speed vehicle was conducted. After two possible mission profiles were established to decide the engine requirements, design point analysis was performed with the values of design parameter which were obtained from similar class engines, references, etc. The results showed that specific net thrust and specific fuel consumption with turbine inlet temperature of 3,600 R are 2,599.4 ft/s and 1.483 lb/(lb*h) respectively at the flight condition of sea level, Mach 1.2. It was also found that major design parameters for determining maximum net thrust were turbine inlet temperature for low supersonic and transonic flight speed and compressor exit temperature for high supersonic flight speed from the results of performance analysis on the two possible mission profiles. In addition, simple turbojet engine with an axial compressor, a straight annular combustor, an one stage axial turbine and a fixed throat area converge-diverge exhaust nozzle was proposed as the configuration of simple low cost lightweight turbine engine.

Interactive System of Computational Grid Generation for Aerodynamic Design of Axial Flow Compressors (축류압축기의 공력설계를 위한 대화형 계산격자점 생성 프로그램 개발)

  • Chung, Hee-Taeg
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.7-16
    • /
    • 1998
  • An interactive mode of grid generation system has been developed for a Navier-Stokes design procedure of axial flow compressors. The present grid generator adopts the multiblock H-grid structure, which simplifies the creation of computational grids about complex turbomachinery geometries and facilitate the manipulation of multiple grid blocks for multirow flow fields. The numerical algorithm adopts the combination of the algebraic and elliptic method to create the internal grids efficiently and quickly. The system consists of four separated modules, which are linked together with a common graphical user interface. The system input is made of the results of the preliminary design. The final grids generated from each module of the system are used as the preprocessor for the performance prediction of the two-or three-dimensional flow simulation inside the blade passage. Application to the blade design of the LP compressor was demonstrated to be very reliable and practical in support of design activities. This customized system are coupled strongly with the design procedure of the turbomachinery cascades using the Navier-Stokes technique.

  • PDF