• Title/Summary/Keyword: 축대칭 유동

Search Result 178, Processing Time 0.023 seconds

Analysis on Roll Damping Induced by Propulsion Jet of Rolling Airframe Missile (회전 유도탄의 추진 제트에 의한 롤 댐핑 해석)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.81-86
    • /
    • 2004
  • Between rolling airframe missile and swirling propulsion jet passing through convergent-divergent nozzle of the rocket motor, occur exchanges of angular momentum which result in the increase of roll speed of the missile. This phenomena in called jet roll damping. In the study jet roll damping was formulated from conservation equation of angular momentum. And the maximum value of the jet roll damping of KPSAM was estimated with assumed swirl velocity distribution at nozzle exit and compared with result of computation of axisymmetric compressible turbulent nozzle flow.

The Structure of Axisymmeric Turbulent Diffusion Flame(II) (재순환 영역이 있는 축대칭 난류 확산화염의 구조 (II))

  • 이병무;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.70-77
    • /
    • 1986
  • Turbulent mixing field with recirculating flow which is formed by injecting gaseous fuel on the main air stream is solved numerically by a finite difference method. The turbulence model for obtaining transport properties was k-.epsilon. model, which was obtained from turbulent kinetic energy and its dissipation rate. Considering the effects of streamline curvature, modified k-.epsilon model was used. Generally, Modified k-.epsilon. model makes better predictions than standard model, and from this result, it is recognized that standard model has deficiency when applied to turbulent recirculating flows, and that modified k-.epsilon. model takes into account of streamline curvature effects properly. Meanwhile, A more study will be necessary to find the reason why large differences between predicted and experimental turbulent kinetic energy exist.

The Structure of the Axisymmetric turbulent Diffusion Flame -( I ) Flow Measurement in Isothermal Field- (재순환 영역이 있는 축대칭 난류확산화염의 구조 -( I ) 비연소 유동장 측정 결과-)

  • 이병무;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.4
    • /
    • pp.328-334
    • /
    • 1984
  • 본 연구에서는 기하학적으로는 물론이며 유동 장체가 축대칭이 되고 재순환 영역이 있는 노즐을 제작하여 우선 연구의 1차 단계로서 연소가 없을 경우 시간 평균 유속 및 난류 성분을 레이져 도플러 유속계로 비교적 정밀히 측정한후, 노즐 유체와 주위공기류와의 시간 평균 혼합특성을 구명하기 위하여 가스크로마토그라프에 의하여 농도 분포를 측정, 모델 검토를 위한 기초 데이타 제공과 실험용으로 채용한 노즐류의 구조를 구명하고저 한다. 특히 노즐유체를 수소/질소 혼합기인 경우와 공기를 사용 한 양 경우를 비교, 검토하므로써 부력효과에 대한 평가를 시도하였다.

Computation of Wake Flow of an Axisymmetric Body at Incidence (받음각을 갖는 축대칭 물체의 후류 유동 계산)

  • Kim, Hee-Taek;Lee, Pyoung-Kuk;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.186-196
    • /
    • 2006
  • The turbulent wake flow of an axisymmetric body at incidence of $10.1^{\circ}$ is investigated by commericial CFD code, Fluent 6.2. Reynolds stress turbulence model with wall function is applied for the turbulent flow computation. For the grid generation, the Gridgen V15 is used. Numerical predictions are compared with experimental data for the validation. The computed results show goof agreements with the experimental measurements, implying that the CFD analysis is a useful and efficient tool for predicting turbulent flow characteristics of wake field of an axisymmetric body at incidence.

Numerical Simulation of Supersonic Inlet Flow (초음속 흡입구 유동의 수치모사)

  • Kwak, Ein-Keun;Yoo, Il-Yong;Lee, Seung-Soo;Jung, Suk-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.133-137
    • /
    • 2009
  • Numerical simulations of flows in an axisymmetric supersonic inlet with bleed regions were performed. For the simulations, the existing code which solves the RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was transformed to axisymmetric form and bleed boundary condition was applied to the code. In this paper, the modified code was validated by comparing the results against an experimental data and other computational results for flow on a bump and over an oblique shock with bleed region. Using the code, numerical simulations were performed for the flow in the inlet with multiple bleed regions.

  • PDF

AXISYMMETRIC STOKES FLOW PAST A DISK IN A CIRCULAR TUBE (원관 내의 디스크를 지나는 축대칭 스톡스 유동)

  • Jeong, Jae-Tack
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.96-101
    • /
    • 2016
  • A two-dimensional Stokes flow past a circular disk in a circular tube is analyzed. The circular disk is located coaxially with the circular tube and the Hagen-Poiseuille flow exists at upstream and downstream far from the circular disk. The Stokes approximation is used and the flow is investigated analytically by using the method of eigenfunction expansion and the method of least square. From the analysis, the stream function and the pressure of the flow field are obtained, and the streamlines and pressure distribution are shown. Also, the pressure and shear stress distributions on the circular disk and circular tube wall are calculated, and shown for some typical radii of the circular disk. The additional pressure drop induced by the disk and the drag force exerted on the disk are compared as functions of the radius of the circular disk, and it is shown that the shear force on the wall of the tube increases due to the disk.

The Slip-Wall Boundary Conditions Effects and the Entropy Characteristics of the Multi-Species GH Solver (다화학종 GH 방정식의 정확성 향상을 위한 벽면 경계조건 연구 및 GH 방정식의 엔트로피 특성 고찰)

  • Ahn, Jae-Wan;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.947-954
    • /
    • 2009
  • Starting from the Eu's GH(Generalized Hydrodynamic) theory, the multi-species GH numerical solver is developed in this research and its computatyional behaviors are examined for the hypersonic rarefied flow over an axisymmetric body. To improve the accuracy of the developed multi-species GH solver, various slip-wall boundary conditions are tested and the computed results are compared. Additionally, in order to validate the entropy characteristics of the GH equation, the entropy production and entropy generation rates of the GH equation are investigated in the 1-dimensional normal shock structure test at a high Knudsen number.

Numerical Analysis of Partial Cavitaing Flow Past Axisymmetric Cylinders (축대칭 실린더형상 주위 부분공동 유동의 전산해석)

  • Kim, Bong-Su;Lee, Byung-Woo;Park, Warn-Gyu;Jung, Chul-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.69-78
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many hydraulic engineering systems, such as pump, turbine, nozzle, injector, etc. In the present work, a solver for cavitating flow has been developed and applied to simulate the flows past axisymmetric cylinders. Governing equations are the two-phase Navier-Stokes equations, comprised of continuity equation of liquid and vapor phase. The momentum equation is in the mixture phase. The solver employed an implicit, dual time, preconditioned algorithm in curvilinear coordinates. Computations were carried out for three axisymmetric cylinders: hemispherical, ogive, and caliber-0 forebody shape. Then, the present calculations were compared with experiments and other numerical results to validate the present solver. Also, the code has shown its capability to accurately simulate the re-entrant jet phenomena and ventilated cavitation. Hence, it has been found that the present numerical code has successfully accounted for cavitating flows past axisymmetric cylinders.

Numerical calculations of flow and heat transfer in an axisymmetric reciprocating engine at it's suction and compression stage (축대칭 왕복 엔진의 흡입 및 압축과정에서 유동 및 열전달의 수치해석)

  • 강신형;이창훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.395-408
    • /
    • 1987
  • Turbulent flows in an axisymmetric reciprocating engine are numerically simulated at it's suction and compression stage. Amounts of heat transfer through the wall of the cylinder are also estimated. k-.epsilon. turbulence model is adopted and the law of the wall is applied at grid-points near the wall. More than 40 * 40 grids are reguried to reasonably predict flows and the 3-level finite difference scheme for the time derivative term appears to be effective rather than the 2-level scheme. Calculated mean velocity distributions shows good agreements with an available experimental data. The program reasonably simulates flow patterns and pressures throughout the suction and the compression stages of the reciprocating engine. Predicted intensities of turbulence are still deviated from measured data. Further researches for turbulence modeling are expected.

CFD Study of the Vacuum-Pump Type Subsonic/Sonic Ejector Flows (진공 펌프형 아음속/음속 이젝터 유동에 관한 수치 해석적 연구)

  • 김희동;권오식;최보규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.26-35
    • /
    • 2000
  • This paper depicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equations in a domain that extends from the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for the subsonic/sonic ejector systems which are applicable to industrial vacuum pumps, the ejector throat area, the mixing section configuration, and the ejector throat length are changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratios, the effects of the design factors on the vacuum performance of the secondary chamber are discussed.

  • PDF