• Title/Summary/Keyword: 추진제(propellant)

Search Result 813, Processing Time 0.022 seconds

Ignition Transition by Ignition Position and Time of Gaseous Oxygen/Kerosene Combustor (기체산소/케로신 연소기에서 점화 위치 및 시간에 따른 점화 과정 연구)

  • Song, Wooseok;Shin, Dongsoo;Son, Min;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.85-90
    • /
    • 2018
  • The objective of this paper is to observe effects of ignition position and time on ignition transition. A gaseous oxygen and liquid kerosene mixture is used as propellant with a shear-coaxial injector. In order to study the ignition delay time and combustion instability intensity, the pressure transducer was used. Sequences, excepting igniter operation time, were fixed to compare the ignition time only. Initial pressure peak and ignition delay time increased as the ignition time was delayed. Additionally, an unstable flame development zone was detected when the igniter was away from the injector.

Evaluation of Cryogenic Performance of Adhesives Using Composite-Aluminum Double Lap Joints (복합재-알루미늄 양면겹치기 조인트를 이용한 접착제의 극저온 물성 평가)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kong, Cheol-Won;Kim, Chun-Gon
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.23-30
    • /
    • 2006
  • In the development of a cryogenic propellant tank, the proper selection of adhesives to bond composite and metal liner is important for the safety of operation. In this study, 3 types of adhesives were tested for the ability to bond CFRP composites developed for cryogenic use and aluminum alloy (Al 6061-T6) for lining the tank using double-lap joint specimens. The double-lap joint specimens were tested inside an environmental chamber at room temperature and cryogenic temperature ($-150^{\circ}C$) respectively to compare the bond strength of each adhesive and fracture characteristics. The material properties with temperature of component materials of double-lap joints were measured. In addition, ABAQUS was used for the purpose of analyzing the experimental results.

KOREAN MARS MISSION DESIGN USING KSLV-III (KSLV-III를 이용한 한국형 화성 탐사 임무의 설계)

  • Song, Young-Joo;Yoo, Sung-Moon;Park, Eun-Seo;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Choi, Joon-Min;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.355-372
    • /
    • 2006
  • Mission opportunities and trajectory characteristics for the future Korean Mars mission have designed and analyzed using KSIV-III(Korea Space Launch Vehicle-III). Korea's first space center, 'NARO space center' is selected as a launch site. For launch opportunities, year 2033 is investigated under considering the date of space center's completion with KSLV series development status. Optimal magnitude of various maneuvers, Trans Mars Injection (TMI) maneuver, Trajectory Correction Maneuver (TCM), Mars Orbit Insertion (MOI) maneuver and Orbit Trim Maneuver(OTM), which are required during the every Mars mission phases are computed with the formulation of nonlinear optimization problems using NPSOL software. Finally, mass budgets for upper stage (launcher for KSIV-III and spacecraft are derived using various optimized maneuver magnitudes. For results, daily launch window from NARO space center for successful Korean Mars mission is avaliable for next 27 minutes starting from Apr. 16. 2033. 12:17:26 (UTC). Maximum spacecraft gross mass which can delivered to Mars is about 206kg, with propellant mass of 109kg and structure mass of 97kg, when on board spacecraft thruster's Isp is assumed to have 290 sec. For upper stage, having structure ratio of 0.15 and Isp value of 280 sec, gross mass is about 1293kg with propellant mass of 1099kg and structure mass of 194kg. However, including 10% margins to computed optimal maneuver values, spacecraft gross mass is reduced to about 148kg with upper stage's mass of 1352kg. This work will give various insights, requiring performances to developing of KSIV-III and spacecraft design for future Korean Mars missions.

Wet Synthesis of Hydroxylammonium Nitrate (HAN) and Solid Phase Extraction Using Dual Organic Solvents (수산화암모늄나이트레이트(HAN)의 습식합성 및 이중 유기용매를 이용한 고체상 추출)

  • Kim, Sohee;Kwon, Younja;Jeon, Jong-Ki;Jo, Youngmin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.317-322
    • /
    • 2020
  • Hydroxylammonium nitrate (HAN; NH3OHNO3) is an ionic energy material having a low melting temperature and vapor pressure with a high oxygen balance. To utilize it as an oxidizer for a high content liquid mono-propellant, a dual solvent was used to obtain HAN in a solid particulate form. The dehydrated crystal from an aqueous HAN was washed with dual organic solvents including acetone and ethanol, finally resulting in the moisture content of 13.8 wt%. When acetone was applied as a single solvent, the maximum synthesis yield of 88%, the HAN content evaluated by TGA of 86.2%, and the decomposition temperature ranged 160℃ to 205℃ were achieved.

Reduction of perchlorate in aqueous solution using zero valence iron stabilized with alginate bead (알지네이트 비드를 이용하여 안정화한 0가 철의 수용액 상에서의 과염소산 이온의 환원 분해 특성)

  • Joo, Tae-Kyeong;Lee, Jong-Chol;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.560-565
    • /
    • 2010
  • Perchlorate ion ($ClO_4^-$) has been widely used as oxidizing agent in military weapon system such as rocket and missile fuel propellant. So it has been challenging to remove the pollutant of perchlorate ion. nanoscale zero valence iron (nZVI) particles are widely employing reduction catalyst for decomposition of perchlorate ion. nZVI particles has increasingly been utilized in groundwater purification and waste water treatment. But it have strong tendency of aggregation, rapid sedimentation and limited mobility. In this study, we focused on reduction of perchlorate ion using nZVI particles immobilized in alginate polymer bead for stabilization. The stabilized nZVI particles displayed much greater surface area, and much faster reaction rates of reduction of perchlorate ion. In this study, an efficient way to immobilize nZVI particles in a support material, alginate bead, was developed by using $Ca^{2+}$ as the cross-linking cations. The efficiency and reusability of the immobilized Fe-alginate beads on the reduction of perchlorate was tested at various temperature conditions.

The Analysis of Perchlorate in Nakdong River and Tap Water (낙동강 수계 및 수돗물에서의 Perchlorate($ClO_4^-$) 분석)

  • Kim, Hwa-Bin;Oh, Jeong-Eun;Lee, Sung-Yun;Cho, Jae-Weon;Snyder, Shane
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.776-781
    • /
    • 2006
  • Perchlorate ion($ClO_4^-$), which is present in the solid propellant for rocket, herbicide and some fertilizers. Perchlorate inhibits iodide uptake by the human thyroid gland. Impairment of thyroid function in expectant mothers may impact the fetus and result in effects including cerebral palsy, give rise to thyroid gland cancer. The US EPA(Environmental Protection Agency) adopted a reference dose(RfD) for perchlorate 0.0007 mg/kg-day, and this guidance lead to a Drinking Water Equivalent Level(DWEL) of 24.5 ${\mu}g/L$. The studies about perchlorate are actively performed in foreign countries, especially in USA but there is no study which surveyed the perchlorate contamination in Korea. Therefore, this study was done to investigate perchlorate contamination in Nak-dong river and tap water. The perchlorate was detected in Nakdong river and ranged from ND to 278.4 ${\mu}g/L$. The highest concentration was observed in Kumichon. The perchlorate concentration was decreased with the down stream of Nakdong river. The perchlorate concentration in tap water was varied with the cities and the concentration levels were $ND{\sim}34.1$ ppb. The highest perchlorate concentration was observed in DalsuGoo in Daegu and the similar concentration($9{\sim}11$ ${\mu}g/L$) was detected in most of the districts in Busan. The result of this study suggests that there is a perchlorate source near the Nakdong river and the urgent policy is needed to control perchlorate for the cities which are supplied from Nakdong river as for their tap water.

Effect of Internal Flow Guide in Pintle Tip on Pintle Injector Thruster Combustion (핀틀 인젝터의 팁 내부 유동 가이드가 연소 성능에 미치는 영향)

  • Lee, Keonwoong;Nam, Jeonsoo;Radhakrishnan, Kanmaniraja;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.703-709
    • /
    • 2020
  • Pintle injector is known to have been adopted as injector of Lunar Module Descent Engine (LMDE) and contributed to success of the Apollo program and recently used in merlin engine. In this study, 500N Lab-Scale pintle injector thruster was manufactured and the combustion experiment with LOx/GCH4 was conducted. However, the proto-type thruster was showed some problems, such as low combustion efficiency and melting of pintle tip. To solve these problems, the flow guide in pintle tip was suggested through the CFD simulation. After addition of flow guide module, the combustion efficiency increased and pintle tip did not melt until the end of combustion.

Range Safety System Operation in KSR-III Flight Test (KSR-III 비행안전 시스템 운영)

  • Ko, Jeong-Hwan;Kim, Jeong-Rae;Park, Jeong-Joo;Bang, Hee-Jin;Choi, Dong-Min;Song, Sang-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.91-97
    • /
    • 2004
  • The first Korean liquid propellant rocket KSR-III successfully finished its flight test on Nov. 28, 2002. Herein, we summarize the results of range safety system operation which is employed for the first time in flight tests of rockets developed by Korea Aerospace Research Institute(KARI). During the flight, safety-critical flight data including instantaneous impact points are monitored in realtime by range safety officers utilizing Range Safety Display Systems. The recorded screen of the display system is presented for the explanation of safety operation. In addition, comparisons are made between onboard navigation system based and radar based results in calculating instantaneous impact points, and also errors from the finally recorded impact point are described.

A study on combustion instability of solid rocket motor with cylinder-slot grain (실린더-슬롯형 그레인을 가진 고체로켓모터의 연소불안정 연구)

  • Lee, Dohyung;Kim, Hongjip
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.371-377
    • /
    • 2020
  • Combustion instability occurred in the combustion test of solid rocket motor with large aspect ration Length/Diameter (L/D) and cylinder-slot grain. As a result of spectral analysis of the pressure perturbation, it was confirmed that the central axis longitudinal frequency was dominant, so that the length of the cylinder part was increased to eliminate the coincidence with acoustic node. In addition, acoustic modal analysis and flow analysis were performed to analyze the cause of instability by unsteady flow structure in solid rocket motors. It was confirmed that the combustion instability is reduced by quantitative comparison of the amplitude and frequencies of the pressure inside the combustion chamber using the grain shape before and after the design change. Finally, a combustion test was performed to verify that the combustion instability was resolved as in the flow analysis.

Development of 30-Tonf LOx/Kerosene Rocket Engine Combustion Devices(I) - Combustion Chamber (추력 30톤급 액체산소/케로신 로켓엔진 연소장치 개발(I)-연소기)

  • Choi, Hwan-Seok;Han, Young-Min;Kim, Young-Mog;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1027-1037
    • /
    • 2009
  • The development of a combustion chamber for a 30-$ton_f$ regeneratively-cooled space liquid rocket engine is described. Starting from the development of bi-propellant swirl coaxial injectors, essential technologies were verified through subscale combustion chambers and afterwards applied to the full-scale combustion chambers. A total of 5 full-scale combustion chambers have been utilized to verify ignition, combustion efficiency and stability, cooling, and duration requirements. A total of 46 combustion tests were performed among which 23 tests were parallely performed with stability rating tests using a pulse gun device. The test results have revealed that the 30-$ton_f$ regeneratively-cooled combustion chamber fully complies to the performance and combustion stability requirements and thus concluded that the development is successfully completed.