• Title/Summary/Keyword: 추진제(propellant)

Search Result 814, Processing Time 0.025 seconds

Basic Design of High Pressure LOx Lines for a Liquid Rocket Engine (액체로켓엔진 액체산소 고압 배관부 기본설계)

  • Moon, Il-Yoon;Yoo, Jae-Han;Moon, In-Sang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.107-110
    • /
    • 2009
  • A basic design for a Technical Development Model (TDM) of liquid oxygen lines from the turbopump exit to the oxidizer valves of the combustion chamber and the gas generator was conducted to develop a turbopump-fed liquid rocket engine. The TDM is composed of straight lines, elbows, bellows, a branch, an orifice, flanges and a heat insulator. Materials were determined by consideration of operation conditions, weight constraint and manufacturing procedures. The size and the location of each component were determined by flow analysis of the required flowrate and the pressure loss. Basic designs of the components were conducted by consideration of the operating temperature and the maximum expectation operating pressure. The safety factors were evaluated by structural analysis of design of each component.

  • PDF

The Result in Quality Management Activity of Propellant and Compressed Gases during the Operation of KSLV-I (KSLV-I 운용에서의 추진제 및 고압가스 품질관리 활동 결과)

  • Jung, Young-Suk;Kang, Sun-Il;Oh, Seung-Hyub;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.133-145
    • /
    • 2011
  • This paper is about the results in Qualification Management activity performed between the Autonomous Test(AT) season(August. 2008) of Launch Complex and the 2nd flight test season(June. 10, 2010) of KSLV-I. All cryogenic fluids(LOX, $LN_2$) and compressed gases(Air, $GN_2$, GHe) were qualified by qualification management activity during AT(Autonmous Test), QT(Qualification Test) season for LP(Launch Pad) and LVAB(Launch Vehicle Assembly Building) and FT(Flight Test) season of KLSV-I. As the results, total 428 times of check analysis and 111 times of full analysis were performed.

Performance Evaluation of Micro-nozzle Using Cold Gas Propulsion System (냉가스 추진장치를 이용한 마이크로 노즐의 성능평가)

  • Jung, Sung-Chul;Kim, Youn-Ho;Oh, Hwa-Young;Myong, Rho-Shin;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.42-49
    • /
    • 2007
  • In this study, we analyzed flow characteristics of micro-nozzles for basic research to develop micro propulsion system. Cold gas propulsion system was used, and micro-nozzles having nozzle throat diameters of 1.0, 0.5, 0.25 mm were fabricated with EDM method. Thrust was measured through the use of plate-spring and strain gage based thrust measurement system, and flow characteristics of micro-nozzles were analyzed under ambient condition and vacuum condition. We used argon and nitrogen gases as propellant, and compared experimental results with CFD analysis. From the result, we verified the flow losses of viscosity and back-pressure caused by minimization of nozzle.

An Analysis on Combustion Instability in Solid Rocket Motor of 230mm Grade (230mm급 고체 추진기관의 연소불안정 거동 현상 분석)

  • Kwon, Tae-Hoon;Rho, Tae-Ho;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.177-180
    • /
    • 2009
  • A Possibility of combustion instability on longitudinal mode has a high level at large scale of L/D. Solid propellant has a metal particle and a grain of control to pressure oscillation. Solid rocket motor in slotted-tube grain controls pressure oscillation of longitudinal mode. If slot length is shot, pressure oscillation of longitudinal mode is amplified by cylinder part after middle phase of total burn time. A study has analyzed pressure oscillation of longitudinal mode at spectrum and acoustic modal analysis at pressure of result on static firing test.

  • PDF

An Analysis on Combustion Instability in Solid Rocket Motor of 4 Slotted Tube Grain (4 Slotted Tube형 고체 추진기관의 연소불안정 거동 현상 분석)

  • Cho, Ki-Hong;Kim, Eui-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.48-56
    • /
    • 2011
  • A Possibility of combustion instability on longitudinal mode has a high level at large scale of L/D. Solid propellant has a metal particle and a grain of control to pressure oscillation. Solid rocket motor in slotted-tube grain controls pressure oscillation of longitudinal mode. Slotted-tube grain restrains longitudinal 1st pressure oscillation. But cavity volume of aft. insulation ablation amplifies 2nd pressure o scillation by vortext shedding. A study has suppressed combustion instability and vortex shedding by modified 4 slotted tube solid rocket motor design.

Product Assurance of KSLV-II Propulsion System (한국형발사체 추진기관개발에서의 제품보증활동)

  • Cho, Sang Yeon;Seol, Woo Seok;Ko, Jeonghwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.598-602
    • /
    • 2017
  • Korea Aerospace Research Institute has been developing 3-stage launcher KSLV-II, which can inject 1.5-ton satellite into sun synchronous orbit (SSO). For development process, Test Launch Vehicle(TLV) adopting the $2^{nd}$ and $3^{rd}$ stage of KSLV-II will be scheduled to launch in 2018. The propulsion system of TLV is composed of $2^{nd}$ stage engine system (ground type) and propellant supply system including LOX, Kerosene tanks. Until now, system integration of engineering model of TLV and delivery of qualification model have been done. In this paper, the product assurance activities for propulsion system KSLV-II will be illustrated.

  • PDF

The Trend of Mitigation Devices for Insensitive Munition of Solid Rocket Motor (고체 추진기관 둔감화를 위한 완화장치의 연구 동향)

  • Ryu Byung-Tae;Yoon Ki-Eun;Jung Jin-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.77-80
    • /
    • 2006
  • Insensitive Munitions(IM) of solid propulsion system are defined as munitions that fulfil the performance and operational requirements, but will minimize the violence of a reaction when subjected to inadvertant stimuli. It should be clear that the reaction violence of rocket motor subjected to thermal stimuli can be mitigated by reducing confinement prior to propellant reaction. Devices designed to do this by venting the rocket motor case are commonly referred to as mitigation devices. The objective of this paper is to introduce the technical information related to the pyrotechnic mitigation devices for insensitive munition of solid rocket motor.

  • PDF

The Study Trend and Problems of Propulsion System in a Zero-gravity Environment (무중력 환경에서 추진기관의 문제점 및 연구 동향)

  • Kil, Gyoung-Sub;Lim, Ha-Young;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.573-576
    • /
    • 2010
  • The propulsion systems such as upper stages of launch vehicles, orbiters, spacecrafts have to operate in the zero gravity environment. Because the flight condition where the vehicle undergoes is different from the normal gravity state, many studies have been being in progress. Fluid behavior in the zero gravity condition is differently shown in the normal gravity state because the importance of the intermolecular force, such as adhesion, cohesion, and surface tension is enlarged. In this paper, we investigate the characteristic of fluid behavior and describe effects and problems on the liquid propulsion system due to these fluid behavior. We also check which studies are in progress in order to solve these problems.

  • PDF

Review of the Liquid Propulsion Technology (액체 추진기관 기술 동향)

  • Lee, Tae Ho;Lee, Chang-Hoan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.132-139
    • /
    • 2013
  • Liquid-propellant rocket engines are widely used all over the world, thanks to their high performances thrust, in particular high thrust-to-weight ratio. The sucess rate of the launching of the liquid propulsion is similar to the solid one even though it has more complex mechanical system. In general, liquid propulsion is seemed as a mature technology, the requirements of a renewed interest for space exploration has led to the development of a family of new engines, with more design margins, simpler to use and to produce associated with a wide variety of thrust and life requirements.

Mass flow rate of Knudsen pump According to Membrane Type for Micro Propulsion Applications (초소형 추진장치에 적용을 위한 누센펌프의 멤브레인 종류에 따른 질유량 특성)

  • Kim, Hye-Hwan;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.36-40
    • /
    • 2008
  • Minimization of nozzle induces many flow losses in micro-propulsion system. In this study, we studied about thermal transpiration based new conceptual micro propulsion system to overcome these losses. Thermal transpiration device(Knudsen pump) having no moving parts can self-pump the gaseous propellant by temperature gradient only (cold to hot). We designed, fabricated the knudsen pump and analyzed pressure gradient efficiency of membrane according to Knudsen number under vacuum condition. In this paper, we compared mass flow rate of Knudsen pump by using different membrane type ; Polyimide and Hangi, Korean traditional paper.

  • PDF