• Title/Summary/Keyword: 추진기관시스템

Search Result 612, Processing Time 0.023 seconds

Introduction to Construction of Propulsion Test Facilities for KSLV-II (한국형발사체 추진기관 시험설비 구축에 대한 소개)

  • Han, Yeoung-Min;Cho, Nam-Kyung;Chung, Young-Gahp;Kim, Seung-Han;Yu, Byung-Il;Lee, Kwang-Jin;Kim, Jin-Sun;Kim, Ji-Hoon;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.343-346
    • /
    • 2010
  • The construction plan of a combustion chamber test facility(CTF), a turbopump real propellant test facility(TPTF), a rocket engine ground/high altitude test facility(ReTF, HAReTF) and a propulsion system test complex(PSTC) for KSLV-II is briefly described. The development/qualification tests of 75ton-class liquid rocket engine system and engine component will be performed in CTF, TPTF, ReTF and HAReTF and the development test of $1^{st}/2^{nd}/3^{rd}$ propulsion systems for KSLV-II will be performed in PSTC. These propulsion test facilities will be built in NARO space center considering construction schedule, cost, safety distance and utility factor of propulsion test facilities.

  • PDF

A Study on International Case and Application for Propulsion System Test Complex (추진기관 시스템 시험설비 개발을 위한 해외사례 분석 및 적용방안)

  • Park, Ju-Hyun;Park, Soon-Sang;Han, Yeoung-Min;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.96-99
    • /
    • 2012
  • The test facility for confirming performance of a propulsion system is essential infra-structure to develop launch vehicle system. Using the PSTC, cold flow and combustion tests are performed to the propulsion system of individual stage in launcher. Moreover the ground test for the total launching process is conducted. In order to construct the PSTC, we not only have surveyed technology of internal and external countries, but also actively use the case in terms of the system. The test facility consists of feeding system, test stand, control and measurement, and flame deflector.

  • PDF

Flame deflector design of test facility to propulsion system model (추진기관 시스템 시험설비의 화염유도로 설계)

  • Jeon, Sung-Bok;Lee, Jae-Ho;Lee, Kwang-Jin;Cho, Nam-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.597-602
    • /
    • 2012
  • Flame deflector is an important plan item for protecting propulsion system model, test facility, and life. This study suggests the way of flame deflector design in test facility evaluating performance of 75 ton and 300ton PSM. The flame deflector height was designed as 30m using a slope way in establishment location of facility. The flame deflector suitability was considered according to the shape of open and closed type. Also the cooling duct was made as modeling in accordance with core and side injection type.

  • PDF

A Study on Method for Safe Testing of Propulsion System according to Oxidizer Contamination (산화제 오염에 대한 추진기관의 안전한 시험방법에 대한 연구)

  • Yu Byung-Il;Bershadskiy V.A.;Kim Sang-Hern;Lee Jung-Ho;Kang Sun-Il;Oh Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.151-154
    • /
    • 2005
  • A study was conducted to investigate safe testing on propulsion system, especially concentrated on effects of contaminants accumulation and transfer in LOX system. Several methods for system operation decreasing accidents caused by oxidizer leakage and contaminants accumulation was investigated. These methods can be applied to LOX system and other propellants system in liquid propellants propulsion system.

  • PDF

Layout and Development Status of Propulsion Test Facilities for KSLV-II (한국형발사체 추진기관 시험설비 배치 및 구축현황)

  • Han, Yeoung-Min;Cho, Nam-Kyung;Chung, Young-Gahp;Kim, Seung-Han;Yu, Byung-Il;Lee, Kwang-Jin;Kim, Jin-Sun;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.139-142
    • /
    • 2012
  • The deign and development status of a combustion chamber test facility(CTF), a turbopump real propellant test facility(TPTF), a rocket engine test facility for 3rd stage engine(SReTF), a rocket engine ground/high altitude test facility(ReTF, HAReTF) and a propulsion system test complex(PSTC) for KSLV-II is briefly described. The development/qualification tests of engine component, 3rd stage engine system and 75ton-class liquid rocket engine system will be performed in CTF, TPTF, SReTF, ReTF and HAReTF and the development test of $1^{st}/2^{nd}/3^{rd}$ propulsion systems for KSLV-II will be performed in PSTC. The CTF/TPTF are under construction such as ordering the long delivery items and the detailed design of ReTF/PSTC is being prepared.

  • PDF

KSLV용 추진기관 종합시험설비 개념설계

  • Kang, Sun-Il;Kim, Young-Han;Lee, Jung-Ho;Cho, Sang-Yeon;Kim, Yong-Wook
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.232-241
    • /
    • 2004
  • KARI(Korea Aerospace Research Institute) is achieving the KSLV program according to National Space Technology Development Program. In this paper, the authors are intend to introduce the Integrated Power Plant(IPP) test facility which will be constructed for the variety of tests on KSLV program. IPP test facility refers to comprehensive testing equipment for liquid rocket launch vehicle. Using this facility, KARI can verify the adaptedness of parts and subsystems for launch vehicle and finally can qualify the system characteristics of launch vehicle doing kinds of test including hot firing test. IPP test facility will make it possible to simulate the vehicle launching circumstances and to predict the performance of launch vehicle during its flight test.

  • PDF

Design and Lay Out of Propulsion Test Facilities for KSLV-II (한국형발사체(KSLV-II) 추진기관 시험설비 배치 및 설계)

  • Han, Yeoung-Min;Cho, Nam-Kyung;Chung, Young-Gahp;Kim, Seung-Han;Yu, Byung-Il;Lee, Kwang-Jin;Kim, Jin-Sun;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.56-61
    • /
    • 2011
  • The deign and lay-out of a combustion chamber test facility(CTF), a turbopump real propellant test facility(TPTF), a rocket engine test facility for 3rd stage engine(SReTF), a rocket engine ground/high altitude test facility(ReTF, HAReTF) and a propulsion system test complex(PSTC) for KSLV-II is briefly described. The development/qualification tests of engine component, 3rd stage engine system and 75ton-class liquid rocket engine system will be performed in CTF, TPTF, SReTF, ReTF and HAReTF and the development test of 1st/2nd/3rd propulsion systems for KSLV-II will be performed in PSTC. These propulsion test facilities will be built in NARO space center considering construction schedule, cost, safety distance and utility factor of propulsion test facilities.

  • PDF

연료절감을 위한 하이브리드 추진시스템에 관한 연구

  • Kim, Min-Uk;Lee, Heon-Seok;Jang, Jae-Hui;Gang, Yeong-Min;O, Jin-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.85-87
    • /
    • 2016
  • 기존의 내연기관만을 이용한 선박 추진시스템은 내연기관의 저부하 운전 구간에서 효율이 낮아지는 문제점을 해결하지 못하고 있다. 그러나 최근 내연기관의 효율이 낮은 저부하 운전 구간에서 전동기를 기동함으로써 연료 효율을 높일 수 있는 하이브리드 추진시스템이 적용되고 있고, 이는 소형 어선부터 호화 여객선, 요트 등에 탑재되어 연료 절감 효과를 입증하고 있다. 본 연구에서는 하이브리드 추진시스템의 연료 절감 효과를 검증하고, 연료 효율을 높이기 위한 하이브리드 추진시스템을 제안한다.

  • PDF

KSR-III 추진기관의 공급시스템 설계 특성

  • 정영석;임석희
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.6-6
    • /
    • 1999
  • 액체 로켓 엔진은 추진기관 공급 시스템으로 작동이 된다. 추진기관 공급 시스템에는 유공압장치 및 각종 배관, 필요한 압력과 유량을 연소실과 가스발생기로 공급하는 시스템, 엔진의 점화 및 정지, 발사체의 사용 목적에 따라 부과되는 기능을 수행하기 위한 장비들이 포함된다. 공급시스템은 크게 가압가스를 이용하는 방법과 터보펌프를 이용하는 방법의 두 가지로 나눌 수 있다. 잘 알려진 바와 같이 일반적으로 추력이 큰 로켓엔진의 경우에는 터보 펌프식이, 추력이 크지 않은 경우에는 가압가스 방식이 이용된다. 일반적으로 가압가스 방식은 연소실 압력이 커질수록 추진제 탱크의 압력도 커지므로, 그 두께가 두꺼워져서 비효율적이 된다. 따라서 연소실 압력이 비교적 크지 않은 추력이 약 10t 내외에서 많이 사용되고, 시스템이 터보 펌프식보다 구조가 매우 간단하므로, 작동의 신뢰도는 매우 높다.

  • PDF

The Status and outlook of Propulsion System for Electric Powered Personal Air Vehicles (전기 동력 Personal Air Vehicle의 추진시스템 현황 및 전망)

  • Lee, Sun-Kyoung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.183-186
    • /
    • 2011
  • In this paper, we present some results of power analyses, and weight estimation on electric propulsion systems for Personal Air Vehicles(PAV) applications. When hybrid electric propulsion is adopted, its power performance using fuel cells and batteries is inferior to that of internal combustion engines for 1,000 kg PAV. However, hybrid electric propulsion systems may replace IC engines when energy density and power density is over $0.75kW{\cdot}hr/kg$and 2.5 kW/kg, respectively.

  • PDF