• Title/Summary/Keyword: 추적 알고리즘

Search Result 1,882, Processing Time 0.027 seconds

Real-time face detection and tracking using hierarchical classifier (계층적 분류기를 이용한 실시간 얼굴 검출 및 추적)

  • Kim, Su-Hui;Yang, Chang-Ho;Lee, Bae-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.497-500
    • /
    • 2003
  • 본 논문은 계층적 분류기를 제안하여 실시간으로 얼굴 영역을 검출하고, PT(pan-tilt) 카메라를 통해 동적으로 얼굴을 추적할 수 있는 강인한 추적 알고리즘을 구현하고자 한다. 제안된 알고리즘은 분류기 학습, 실시간 얼굴 영역 검출, 추적의 세 단계로 구성된다. 분류기 학습은 AdaBoost 알고리즘을 이용하여, 독특한 얼굴 특징을 추출하는 계층적 분류기를 생성한다. 계층적 분류기는 높은 정확도를 가진 분류기들이 단계적으로 결합됨으로써 우수한 검출 성능으로 수행된다. 실시간 얼굴 영역 검출은 생성된 계층적 분류기를 통해, 빠르고 효율적으로 얼굴 영역을 찾아낸다. 추적은 PT 카메라를 통해 동적으로 검출 영역을 확장시키며, 이전 단계에서 추출된 얼굴 영역의 위치 정보를 이용하여 수행한다. 제안된 알고리즘은 계산의 효율성과 검출 성능을 동시에 증가시키며, 얼굴 검출 수행은 2초당 약 15프레임을 실시간으로 처리한다.

  • PDF

An Object Tracking Algorithm Using Feature Point of Active Camera (능동 카메라에서 특징점을 이용한 객체 추적 알고리즘)

  • Kim, Jae-Ho;Kim, Shin-Hyung;Hwang, Tae-Hyun;Joo, In-Hak;Jang, Jong-Whan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.53-56
    • /
    • 2003
  • 본 논문에서는 비디오 지리정보시스템 구축을 위해 특징점을 이용한 객체 추적 알고리즘을 제안한다. 기존의 특징점을 이용한 객체 추적 알고리즘은 카메라의 움직임이 배제된, 즉 배경이 고정된 영상에서 객체의 특성을 이용한 방식으로, 운행중인 차량에 부착된 카메라에서 획득한 영상에서는 배경이 움직이므로 객체를 정확하게 추적하지 못하는 문제점이 있다. 본 논문에서는 이러한 문제점을 개선하기 위해 연속된 카메라 영상에서 모션벡터를 이용해 시간에 따른 객체의 변화율을 유도하고 유도된 변화율을 이용하여 객체 추적 알고리즘을 제안한다.

  • PDF

Multiple Pedestrians Detection and Tracking using Histogram and Color Information from a Moving Camera (이동 카메라 영상에서 히스토그램과 컬러 정보를 이용한 다수 보행자 검출 및 추적)

  • 임종석;곽현욱;김욱현
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.193-202
    • /
    • 2004
  • This paper presents a novel histogram and color information based algorithm for detecting and tracking multiple pedestrians from a moving camera. In the proposed method, RGB color histogram is used to detect adjacent pedestrians and RGB mean value is used to track detected pedestrians. Therefore, our algorithm detect contiguous or a few occluded pedestrians and track in case pedestrian's shape change. The experimental results on our test sequences demonstrate the high efficiency of our method.

Real-time Face Tracking Using Multi Color Model and Face Gradient Correction Algorithm (다중 컬러 모델을 이용한 실시간 얼굴 추적 및 기울기 보정 알고리즘)

  • 석영수;이응주
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.488-491
    • /
    • 2003
  • 본 논문에서는 실시간 CCD 카메라 입력 영상으로부터 다중 컬러 정보를 이용하여 얼굴 영역을 검출 및 추적하고 기울어진 얼굴을 보정하는 알고리즘을 제안하였다. 제안한 알고리즘은 먼저 획득된 RGB 영상에서 YCbCr컬러 모델과 YIQ컬러 모델로 변환한 후 Cr성분과 I성분을 추출하여 얼굴 피부색을 검출, 얼굴 영역 추출에 사용하였다. 또한 추출된 얼굴 후보 영역에서 수평, 수직 투영(Projection)정보로부터 최종 얼굴 영역으로 검출한 다음 검출된 얼굴 중심 좌표와 이전에 검출된 얼굴 중심 좌표 값을 유클리드언 거리로 얼굴을 추적하였으며 검출된 얼굴로부터 레이블링(Labeling)기법으로 눈 특징자를 검출, 눈의 기울기 각도를 보정함으로써 얼굴 기울기를 보정하였다. 제안한 얼굴 추적 및 기울기 보정 알고리즘을 사용하여 실험한 결과 다중 색상 정보를 사용함으로써 주위환경 변화에 강인하게 실시간 얼굴 영역 김출 및 추적이 가능하였고, 기울어진 얼굴 영상을 자동 보정함으로써 인식에 용이하였다.

  • PDF

Implementation of Indoor Location Tracking System Using ETOA Algorithm in Non-Line-Of-Sight Environment (비가시선(NLOS) 환경에서 ETOA알고리즘을 이용한 실내 위치 추적 시스템 구현)

  • Kang, Kyeung-Sik;Choi, Goang-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.300-308
    • /
    • 2012
  • Many indoor location tracking technologies have been proposed. Generally indoor location tracking using TOA signal is used, there is a weak point that it's difficult to track the location due to obstacles like a refraction, reflection and dispersion of radio wave. In this paper, we apply ETOA(Estimated-TOA) algorithm in NLOS(Non-Line-Of-Sight) environment to solve above problem. In NLOS environment, TOA value between Beacon and Mobile node is predicted by ETOA algorithm and the tracking of indoor location is also possible to identify using two NLOS beacons of three beacons by this algorithm. We show that the proposed algorithm is accurate location tracking is accomplished using the applying the proposed algorithm to indoor moving robot and the inertia sensor of robot and Kalman filter algorithm.

Performance Improvement of Camshift Tracking Algorithm Using Depth Information (Depth 정보를 이용한 CamShift 추적 알고리즘의 성능 개선)

  • Joo, Seong-UK;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.2
    • /
    • pp.68-75
    • /
    • 2017
  • This study deals with a color-based tracking method of a moving object effectively in case that the color of the moving object is same as or similar to that of background. The CamShift algorithm, which is the representative color-based tracking method, shows unstable tracking when the color of moving objects exists in the background. In order to overcome the drawback, this paper proposes the CamShift algorithm merged with depth information of the object. Depth information can be obtained from Kinect device which measures the distance information of all pixels in an image. Experimental result shows that the proposed tracking method, the Camshift merged with depth information of the tracking object, makes up for the unstable tracking of the existing CamShift algorithm and also shows improved tracking performance in comparison with only CamShift algorithm.

  • PDF

Real-time Moving Object Tracking from a Moving Camera (이동 카메라 영상에서 이동물체의 실시간 추적)

  • Chun, Quan;Lee, Ju-Shin
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.465-470
    • /
    • 2002
  • This paper presents a new model based method for tracking moving object from a moving camera. In the proposed method, binary model is derived from detected object regions and Hausdorff distance between the model and edge image is used as its similarity measure to overcome the target's shape changes. Also, a novel search algorithm and some optimization methods are proposed to enable realtime processing. The experimental results on our test sequences demonstrate the high efficiency and accuracy of our approach.

Tracking Moving Object using Hausdorff Distance (Hausdorff 거리를 이용한 이동물체 추적)

  • Kim, Tea-Sik;Lee, Ju-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.79-87
    • /
    • 2000
  • In this paper, we propose a model based moving object tracking algorithm In dynamic scenes To adapt shape change of the moving object, the Hausdorff distance is applied as the measurement of similarity between model and image To reduce processing time, 2D logarithmic search method is applied for locate the position of moving object Experiments on a running vehicle and motorcycle, the result showed that the mean square error of real position and tracking result is 1150 and 1845; matching times are reduced average 1125times and 523 times than existing algorithm for vehicle image and motorcycle image, respectively It showed that the proposed algorithm could track the moving object accurately.

  • PDF

Efficient Multiple Object Tracking without Appearance Features (외형 특징을 사용하지 않는 효율적인 다중 물체 추적 방법)

  • Lee, Hyemin;Kim, Daijin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.872-874
    • /
    • 2021
  • 본 논문은 외형 특징을 사용하지 않는 효율적인 다중 물체 추적 방법을 제안한다. 본 논문의 목적은 다중 물체 추적 방법이 합성곱 신경망 등의 외형 특징을 사용하지 않고 순수한 모션 모델의 힘으로 도달할 수 있는 최대의 성능을 찾는 것이다. 많은 다중 물체 추적 방법들이 추적 대상들 간의 유사성을 파악하기 위해 외형 특징을 사용한다. 하지만 다양한 외형 특징들을 갖는 방법들은 기본 특징 추출 알고리즘이 다르고, 다중 추적의 성능 향상이 어느 부분으로부터 오는지 정확히 파악할 수 없다. 또한, 각각 다른 매칭 알고리즘과 특징 디자인은 서로 다른 알고리즘의 효과를 순수하게 비교할 수 없다. 이러한 관점에서, 본 연구에서는 어떠한 외형 특징을 사용하지 않고 명확하게 추적 알고리즘의 효율성을 비교할 수 있는 가이드라인을 제시한다. 외형 특징을 사용하지 않고도 실용적으로 사용 가능한 성능에 도달할 수 있음을 공인 MOT2016, MOT2016 데이터셋에 대한 실험을 통해 증명한다. 이러한 방법은 GPU 를 사용하지 않고 200 fps 이상의 높은 속도를 보여 실시간 속도를 요구하는 임베디드 시스템 상의 어플리케이션에 적합하다.

PTZ Camera Tracking Using CAMShift (CAMShift를 이용한 PTZ 카메라 추적)

  • Chang, Il-Sik;An, Tae-Ki;Park, Kwang-Young;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3C
    • /
    • pp.271-277
    • /
    • 2010
  • In this paper we proposed an object tracking system using PTZ camera. Once the target object is detected, the CAMshift tracking algorithm focuses it in realtime mode as the camera is moving accordingly. Since the CAMShift algorithm takes into account the object size, zoom related tracking is possible. We used the spherical coordinate to gain pan and tilt position. The position information is used to set the center of target object in the middle of the image by using the PTZ protocol and RS-485 interface. Our system showed excellent experimental results in various environments.