Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.431-436
/
2006
외곽선 추적 알고리즘은 영상 인식 및 표현에 있어서 물체의 기본 성질을 파악하는데 중요하다. 따라서 많은 알고리즘들이 연구되어 왔으며, 이중에는 간단한 경계선 추적자 알고리즘(SBF: Simple Boundary Follower)이다. 이외에도 수정된 간단한 경계선 추적자 알고리즘 (MSBF: Modified Simple Boundary Follower), 개선된 간단한 경계선 추적자 알고리즘(ISBF: Improved Simple Boundary Follower), 무어-네이버 추적 알고리즘(MNT: Moore-Neighbor Tracer), 방사형 탐색 알고리즘(RSA: Radial Sweep Algorithm), 그리고 Theo Pavlidis 알고리즘(TPA)이 있다. 이러한 알고리즘들은 추적 경로 특성들이 다르며 각기 장점과 제약성이 있다.외곽선 알고리즘들의 제약성은 크게 두 가지로 나눌 수 있다. 하나는 알고리즘 특성에 따라 외곽선 픽셀간 인접 형태에 따라 추적하지 못하는 경우가 존재할 수 있다는 것이다. 또 다른 하나는 외곽선 추적 알고리즘의 시작과 종료 조건에 따라서 특정 위치 픽셀들을 찾지 못하는 경우도 존재한다는 점이다. 본 논문에서는 이러한 문제점들을 중심으로 외곽선 추적 알고리즘들의 성능을 분석하였다. 또한, ISBF의 시작 조건과 TPA의 인너코너 추적을 개선하는 기법들을 제안하여 이를 해결토록 하였다. 실험 결과 제안한 기법들은 외곽선 추적 성능을 개선하는데 효과적이었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.25-28
/
2016
본 논문에서는 실시간 얼굴 추적을 위하여 기존의 CamShift 알고리즘의 단점을 보완한 새로운 CamShift 알고리즘을 제안한다. 배경 내 추적 객체와 색상이 유사한 객체가 존재할 경우 기존 CamShift 알고리즘은 불안정한 추적을 보여준다. 이러한 문제점을 화소 단위로 거리정보를 획득할 수 있는 Kinect 의 깊이 정보와 HSV 색공간 기반의 피부색 후보영역을 추출하는 Skin Detection 알고리즘을 이용하여 색상분포만 이용하는 기존의 CamShift 의 단점을 보완한다. 또한 추적하던 객체가 사라지거나 가려짐이 발생할 경우에도 다시 추적할 수 있는 특징점 기반의 매칭 알고리즘을 통하여 차폐영역에 강인한 특성을 가지게 한다. 이러한 향상된 CamShift 알고리즘을 사람의 얼굴 추적에 적용함으로써 다양한 분야에 활용 가능한 강인한 얼굴추적 알고리즘을 제안하고자 한다. 실험결과 제안하는 알고리즘은 기존의 추적 알고리즘인 TLD 보다 월등히 빠른 처리속도와 더 우수한 추적성능을 보여주었고, CamShift 보다 조금 느리지만 기존의 CamShift 가 가지고 있는 문제점들을 해결하였다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.79-79
/
2015
현재 홍수 시 유량조사에 가장 많이 사용하고 있는 부자법은 측정 인력, 측정비용 및 위험성이 높다는 단점이 있다. 또한 교량에서 부자를 투하하고 측면에서 부자의 이동을 추적하기 때문에 평면상의 이동에 대한 정보를 얻기 어렵다는 한계가 있다. 이에 김서준 등(2014)은 PTV 기법을 이용한 부자 추적 알고리즘을 개발하였으나 부자가 회전하거나 물속에 잠기는 부분이 변화하여 수면 위로 확인되는 부자의 길이가 변할 경우 추적이 어렵다는 한계가 있었다. 이를 개선하고자 본 연구에서는 Template Match 알고리즘과 색상 기반 영상 처리 기법을 이용한 목표물 인식 방법인 Camshift 기법을 적용하여 부자를 추적할 수 있는 알고리즘을 개발하였다. Template Match 알고리즘의 경우는 입자가 많을수록 추적을 잘한다는 장점이 있지만 회전 및 변형에 취약하다는 단점이 있고, Camshift 영상 처리 기법의 경우 다수의 추적자가 존재할 경우 추적에 어려움이 있으나 추적자의 회전과 변형을 정확하게 추적할 수 있다는 장점이 있다. 따라서 Template Match 알고리즘을 이용하여 이동 예상영역을 결정하고 Camshift 영상 처리 기법으로 추적을 하게되면 두 방법의 장점을 모두 살릴 수 있다. Camshift 영상 처리 기법을 실제 부자 추적에 적용해 본 결과 부자의 회전 및 변형에도 정확하게 추적할 수 있는 것을 확인하였다. 향후 부자법을 이용한 유량 조사에 본 연구에서 개발한 알고리즘을 적용한다면 현장에서 동영상 촬영만 하면 되기 때문에 측정 인원을 최소화 할 수 있어 매우 경제적이고, 홍수 시 위험성도 감소할 것으로 기대된다.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.516-518
/
2012
본 논문은 Particle Filtering과 계층적인 Boosting 알고리즘을 이용한 다중 객체 추적 기법을 제안한다. Particle Filtering을 이용하여 각 객체를 단일 객체로 추적하고 Boosting 기반의 데이터 연관 알고리즘을 사용하여 영상에서 움직이는 물체들을 추적한다. 본 제안한 알고리즘에서는 객체들의 이동경로 정확한 감지를 위해 Particle Filtering을 통해 각 객체가 움직이는 예측 정보를 이용하고, Boosting 알고리즘을 계측적인 형태로 설계함에 따라 데이터 물체의 추적 정확도를 높일 수 있도록 하였다.
본 논문에서 제안하는 알고리즘은 심벌 타이밍 jitter 를 최소화하기 위해 가장 강한 신호를 주기적으로 감시하고, 그 신호를 적응적으로 DLL(Delayed Locked Loop)의 기준 신호로 정한다. 결과적으로 제안된 알고리즘은 DLL 추적 실패를 피할 수 있고, 기존의 알고리즘에 비하여 DLL의 정상 상태 추적 오류가 작다. 모의실험을 통하여 제안된 알고리즘의 정상상태 DLL 추적오류가 작고 다중 경로 상황에서 DLL 추적 실패를 피할 수 있음을 확인 하였다. 따라서 본 논문에서 제안하는 알고리즘은 OFDM 의 시간동기 복원 알고리즘에 적합하다.
Conventional color-based object tracking using Mean Shift algorithm does not provide appropriate result when initial color distribution disappears. In this paper we propose a tracking algorithm that updates the object color sample when the color is changing. Mean Shift analysis is first used to derive the object candidate with maximum increase in density direction from current position. The color information of object is updated iteratively. The proposed algorithm achieves accurate tracking of objects when initial color samples are changed and finally disappeared. The validity of the effective approach is illustrated by the experimental results.
Proceedings of the Korea Information Processing Society Conference
/
2006.11a
/
pp.137-140
/
2006
본 논문은 급격한 컬러 변화를 보이는 물체를 추적하기 위해 새로운 알고리즘에 대해서 기술하였다. 이를 수행하기 위해 컬러기반의 추적 알고리즘인 Mean Shift를 개선하여 적용한다. 지존의 Mean Shift 알고리즘은 물체 추적을 위해 컬러 분포 정보를 설정한다. 하지만 초기의 컬러 분포 정보가 사라질 경우 물체 추적을 정확히 수행하기 힘들다는 문제점을 안고 있다. 본 논문에서는 이를 해결하기 위해 Mean Shift를 개선하여, 추적 대상의 컬러 정보를 반복적으로 업데이트하여 초기의 컬러 정보가 사라지더라도 추적이 가능하도록 개선하였다. 개선된 추적 알고리즘은 시간에 따라 초기의 컬러 분포 정보가 완전히 사라지더라도 실시간 추적이 가능하도록 구현하였다. 이를 입증하기 위해 본 논문의 실험에서는 실험적인 환경에서 급격한 컬러 변화를 보이는 간단한 문제의 추적과 실생활에서의 예를 함께 보여준다.
Ryu et al. proposed a multiple target angle tracking algorithm using the angular measurement obtained from the signal subspace estimated by the output of sensor array. Ryu's algorithm has good features that it has no data association problem and simple structure. But its performance is seriously degraded in the low signal-to-noise ratio, and it uses the angular measurement obtained from the signal subspace of sampling time, even though the signal subspace is continuously updated by the output of sensor array. For improving the tracking performance of Ryu's algorithm, a measurement fusion method is derived based on ML(Maximum Likelihood) in this paper, and it admits us to use the angular measurements obtained form the adjacent signal subspaces as well as the signal subspace of sampling time. The new target angle tracking algorithm is proposed using the derived measurement fusion method. The proposed algorithm has a better tracking performance than that of Ryu's algorithm and it sustains the good features of Ryu's algorithm.
This paper first discusses the disadvantages of the existing CamShift Algorithm for real time face tracking, and then proposes a new Camshift Algorithm that performs better than the existing algorithm. The existing CamShift Algorithm shows unstable tracking when tracing similar colors in the background of objects. This drawback of the existing CamShift is resolved by using Kinect’s pixel-by-pixel depth information and the Skin Detection algorithm to extract candidate skin regions based on HSV color space. Additionally, even when the tracking object is not found, or when occlusion occurs, the feature point-based matching algorithm makes it robust to occlusion. By applying the improved CamShift algorithm to face tracking, the proposed real-time face tracking algorithm can be applied to various fields. The results from the experiment prove that the proposed algorithm is superior in tracking performance to that of existing TLD tracking algorithm, and offers faster processing speed. Also, while the proposed algorithm has a slower processing speed than CamShift, it overcomes all the existing shortfalls of the existing CamShift.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.160-162
/
2017
본 논문은 칼만 필터를 이용한 다중 객체 추적 알고리즘에 대하여 다루고 있다. 기존의 객체 추적 알고리즘만을 이용하여 객체 추적을 하였을 경우, 잘못 검출되는 물체의 비율이 높았는데, 이를 해결하기 위하여, 본 실험에서는 움직이는 물체에 집중하여, 객체 추적을 하는 방법에 대하여 연구하였다. 효과적인 객체 추적을 위하여, 우리는 우선 배경 분리 알고리즘의 결과 이미지에서 객체의 후보들을 찾았다. 실험적인 결과를 통해 비디오에서 오직 움직이는 물체에만 집중함으로써 우리는 효과적이고 효율적으로 객체를 추적할 수 있다는 것을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.