Along with the increase of internet shopping, crimes that exploited personal information on the invoice of goods are becoming more and more advanced and becoming more and more classified from the interception of goods through voice phishing attack, injury, sexual offense. Therefore, in order to guarantee the anonymity of the customer's delivery information, there is a need for a delivery tracking prevention system which keeps the route information of the product's destination secret among delivery companies. For this purpose, We suggest that delivery tracing protect model based smart contract for guaranteed anonymity to protect the anonymity by encrypting delivery information and by separation of payment and personal information using the anonymity technique of block chain-based cryptography. Our proposed model contributes to expansion of internet shopping based on block chaining by providing information about product sales to company and guaranteeing anonymity of customer's delivery information to customer.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.302-304
/
2003
최근 인터넷을 통하여 급속히 확산되고 있는 분산 서비스 거부 공격은 전 세계 웹 사이트들에 큰 피해를 입히면서 세계적인 문제로 부상되었다. 현재 이에 대한 대책으로 방화벽이나 침입 탐지 시스템을 이용하지만. 전 세계에서 동시 다발적으로 일어나는 이 공격을 근본적으로 방지하는 데는 적합지 않다. 이에 본 논문에서는 공격 트래픽의 송신자 주소를 임의의 IP 주소를 사용하여 공격의 발원지를 추적할 수 없는 기존 문제점을 해결할 수 있는 분산 서비스 거부 공격 발원지 자동 추적 모델을 제시하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
2004.04a
/
pp.301-303
/
2004
인터넷의 급성장으로 해킹이나 Dos 공격, 웜, 바이러스 등의 사이버 범죄가 크게 증가하고 지능화되어 최근 역추적에 대한 관심이 날로 증가하고 있다. 보안 도구로 침입탐지시스템(IDS) 이나 침입방지시스템 (IPS) 등이 있으나 해킹이나 DoS 공격을 방어하는데 현실적으로 한계가 있다. 따라서 능동적인 해킹 방어를 위한 기본적인 기술로 해커의 실제 위치를 추적하는 역추적 시스템 기술이 필요하다. 특히 IPv4에서의 역추적 시스템에 대한 연구는 활발하게 이루어지고 있지만 IPv6에 대한 연구는 아직 미흡하다. 본 논문에서는 IPv4의 주소 고갈로 인해 앞으로 이를 대신할 IPv6에 대한 공격 근원지 역추적 시스템 개발이 시급하다고 보고. 해킹을 시도하는 해커의 실제 위치를 실시간으로 추적할 수 있도록 IPv6 헤더 패킷의 트래픽 클래스(Traffic Class)와 플로우 라벨(Flow Label)을 이용하여 IPv6에서의 실시간 네트워크 침입자 역추적 시스템 모델을 제안하고자 한다.
In this paper, we propose an on-line tracking method using convolutional neural network (CNN) for tracking object. It is well known that a large number of training samples are needed to train the model offline. To solve this problem, we use an untrained model and update the model by collecting training samples online directly from the test sequences. While conventional methods have been used to learn models by training samples offline, we demonstrate that a small group of samples are sufficient for online object tracking. In addition, we define a loss function containing color information, and prevent the model from being trained by wrong training samples. Experiments validate that tracking performance is equivalent to four comparative methods or outperforms them.
Proceedings of the Korean Information Science Society Conference
/
2002.10e
/
pp.58-60
/
2002
CRM이 기업의 핵심 경영전략으로 도입되면서 기업이 보유하고 있는 고객데이터를수집, 통합, 가공, 분석하여 마케팅을 위해 활용하고자 하는 시도가 계속되고 있다. 특히, 기존고객의 유지 전략과 기존고객을 활용한 신상품 유도 전략이 중요한 이슈로 대두되면서 마이닝을 통한 CRM관점의 고객이탈방지는 각 통신사에서 지속적으로 추진하고 있는 분야이다. 본 연구에서는 KT의 고객이탈방지 모텔 구축을 사례로 효율적인 마이닝 모델 구축을 위한 고객통합구조를 제안하고자 한다. 그러고, 고객이탈방지 모델 구축의 전처리 과정으로 고객통합구조를 적용하여 고객중심의 변수 도출, 이용행태 추적 등을 통해 의미 있는 해지변수를 찾아내는 방법과 그 효과에 대해 기술한다.
Kim, Gi-Jung;Yun, Sang-Hun;Lee, Yong-Jun;Ryu, Geun-Ho
Journal of KIISE:Computer Systems and Theory
/
v.26
no.2
/
pp.198-210
/
1999
산업 및 통신기술이 급속히 발전함에 따라, 다양한 형태의 침입기법을 통해 클라이언트-서버 구조의 정보 공유 및 서비스 개념으로 운영되는 시스템상에서 중요한 정보에 대한 유출 및 파괴로 인한 역기능이 심각할 정도로 증가하고 있다. 따라서, 정보시스템에서의 정보의 불법유출을 방지하고 문서나 시스템에 대한 불법행위를 감지할 수 있는 감사추적 기법이 요구된다. 이 논문에서는 능동데이타베이스의 능동규칙을 기존 기법보다 효과적으로 침입자를 감지할수 있는 새로운 감사추적 및 분석시스템 모델을 제안하였다. 이 모델은 시스템사용자에 의해서 발생되는 감사자료의 비정상 여부를 판단할수 있는 기법과 유형별 침입자를 감지하는 알고리즘을 제시하여 정상적인 사용자의 이탈된 행동을 판단할 수 있는 바업을 제시한다.
In the post-COVID era, the importance of quarantine measures is greatly emphasized, and accordingly, research related to the detection of mask wearing conditions and prevention of other infectious diseases using deep learning is being conducted. However, research on the detection and tracking of visitors to cultural facilities to prevent the spread of diseases is equally important, so research on this should be conducted. In this paper, a convolutional neural network-based object detection model is trained through transfer learning using a pre-collected dataset. The weights of the trained detection model are then applied to a multi-object tracking model to monitor visitors. The visitor detection model demonstrates results with a precision of 96.3%, recall of 85.2%, and an F1-score of 90.4%. Quantitative results of the tracking model include a MOTA (Multiple Object Tracking Accuracy) of 65.6%, IDF1 (ID F1 Score) of 68.3%, and HOTA (Higher Order Tracking Accuracy) of 57.2%. Furthermore, a qualitative comparison with other multi-object tracking models showcased superior results for the model proposed in this paper. The research of this paper can be applied to the hygiene systems within cultural facilities in the post-COVID era.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.3
/
pp.611-616
/
2020
In order to prevent the further spread of the COVID-19 virus in big cities, this paper proposes a semantic diagnosis and tracking system based on Linked Data through the cluster analysis of the infection situation in Seoul, South Korea. This paper is mainly composed of three sections, information of infected people in Seoul is collected for the cluster analysis, important infected patient attributes are extracted to establish a diagnostic model based on random forest, and a tracking system based on Linked Data is designed and implemented. Experimental results show that the accuracy of our diagnostic model is more than 80%. Moreover, our tracking system is more flexible and open than existing systems and supports semantic queries.
The Journal of Korean Institute of Communications and Information Sciences
/
v.40
no.10
/
pp.2090-2101
/
2015
We propose a robust tracking method that combines the merits of ACM(active contour model) and the color-based PF(particle filter), effectively. In the proposed method, PF and ACM track the color distribution and the contour of the target, respectively, and Decision part merges the estimate results from the two trackers to determine the position and scale of the target and to update the target model. By controlling the internal energy of ACM based on the estimate of the position and scale from PF tracker, we can prevent the snake pointers from falsely converging to the background clutters. We appled the proposed method to track the head of person in video and have conducted computer experiments to analyze the errors of the estimated position and scale.
Kim, Do-Sam;Kim, Tag-Gyeom;Shin, Bum-Shick;Lee, Kwang-Ho
Journal of Korean Society of Coastal and Ocean Engineers
/
v.32
no.1
/
pp.1-10
/
2020
The application of multiphase flows is increasingly being applied to analyze phenomena such as single phase flows where the fluid boundary changes continuously over time or the problem of mixing a liquid phase and a gas phase. In particular, multiphase flow models that take into account incompressible Newtonian fluids for liquid and gas are often applied to solve the problems of the free water surface such as wave fields. In general, multi-phase flow models require time-based the surface tracking of each fluid's phase boundary, which determines the accuracy of the final calculation of the model. This study evaluates the advection performance of representative VOF-type boundary tracking techniques applied to various CFD numerical codes. The effectiveness of the FCT method to control the numerical flux to minimize the numerical diffusion in the conventional VOF-type boundary tracking method and advection calculation was mainly evaluated. In addition, the possibility of tracking performance of free surface using CIP method (Yabe and Aoki, 1991) was also investigated. Numerical results show that the FCT-VOF method introducing an anti-diffusive flux to precent excessive diffusion is superior to other methods under the confined conditions in this study. The results from this study are expected to be used as an important basic data in selecting free surface tracking techniques applied to various numerical codes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.