• Title/Summary/Keyword: 추론 성능 향상

Search Result 204, Processing Time 0.028 seconds

A New Memory-Based Reasoning Algorithm using the Recursive Partition Averaging (재귀 분할 평균 법을 이용한 새로운 메모리기반 추론 알고리즘)

  • Lee, Hyeong-Il;Jeong, Tae-Seon;Yun, Chung-Hwa;Gang, Gyeong-Sik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1849-1857
    • /
    • 1999
  • We proposed the RPA (Recursive Partition Averaging) method in order to improve the storage requirement and classification rate of the Memory Based Reasoning. This algorithm recursively partitions the pattern space until each hyperrectangle contains only those patterns of the same class, then it computes the average values of patterns in each hyperrectangle to extract a representative. Also we have used the mutual information between the features and classes as weights for features to improve the classification performance. The proposed algorithm used 30~90% of memory space that is needed in the k-NN (k-Nearest Neighbors) classifier, and showed a comparable classification performance to the k-NN. Also, by reducing the number of stored patterns, it showed an excellent result in terms of classification time when we compare it to the k-NN.

  • PDF

A Study on Realtime Drone Object Detection Using On-board Deep Learning (온-보드에서의 딥러닝을 활용한 드론의 실시간 객체 인식 연구)

  • Lee, Jang-Woo;Kim, Joo-Young;Kim, Jae-Kyung;Kwon, Cheol-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.883-892
    • /
    • 2021
  • This paper provides a process for developing deep learning-based aerial object detection models that can run in realtime on onboard. To improve object detection performance, we pre-process and augment the training data in the training stage. In addition, we perform transfer learning and apply a weighted cross-entropy method to reduce the variations of detection performance for each class. To improve the inference speed, we have generated inference acceleration engines with quantization. Then, we analyze the real-time performance and detection performance on custom aerial image dataset to verify generalization.

A Study on the Embodiment of Fuzzy Logic (퍼지 이론을 실생활 적용구현 연구)

  • 정정민;최성
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.05a
    • /
    • pp.243-247
    • /
    • 2002
  • 현재 인간의 지능을 모방하는 인공지능 기법은 인간 친화적인 시스템의 자동화, 제품의 성능 향상 등 공학분야에 적용되기 시작하였고, 병의 진단 및 판정 , 경영의사 결정 등의 사회과학 분야까지 그 응용분야가 확대되고 있다. 이러한 인공지능을 컴퓨터에 의한 언어적 추론의 개념과 방법을 연구하여 추론하는데 사용되는 지식을 언어적으로 표현하는 것을 연구하였고, 인간이 서로간의 지능적이라고 인식하는 대로 행동하도록 컴퓨터가 만들어질 수 있는 가능성을 추구하는 분야 즉 인공지능을 실현하는데, 원론이 되는 퍼지의 이론을 중심으로 연구하였다.

KU-Bot: Chatbot combining Retrieval-based model and Generative Model (건국봇: 검색모델과 생성모델을 결합한 챗봇)

  • Lee, Hyunwoo;Min, Dugki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.449-452
    • /
    • 2018
  • 최근 AI 스피커를 비롯한 지능형 비서 서비스들이 빠르게 등장하고 있으며, AI 시장에서도 특히 챗봇 구축이 가장 활발하게 진행되고 있다. 건국봇은 건국대학교 학생들에게 필요한 정보를 제공하는 대화형 서비스이다. 본 논문에서는 대표적인 챗봇 구현 방법인 검색모델과 생성모델의 장단점을 분석하고, 건국봇에 적용한 사례를 소개한다. 궁극적으로, 질의문의 의도를 단어의 가중치를 고려해 추론함으로써 Unknown 추론을 강화하고 의도되지 않은 문장의 처리 관점에서 성능을 향상시키는 방법을 제안한다.

User Location Inference Using a User Group Model in Smartphone Environment (스마트폰 환경에서 사용자 그룹별 모델을 활용한 사용자 장소 추론)

  • Kim, Young-Ho;Kang, Young-Gil;Lee, Soo-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.270-273
    • /
    • 2011
  • 스마트폰의 확산으로 스마트폰에 내장된 다양한 센서를 활용한 상황인지 서비스가 고도화 되어가고 있다. 이와 관련하여 GPS 센서, WiFi AP, Cell Tower 등의 정보를 이용하여 사용자의 위치를 파악하는 연구와 LBS(Location Based Service)에 대한 연구들이 이루어지고 있다. 하지만, 기존의 GPS 등과 같은 위치 센싱 정보를 통한 위치 파악 방법은 인프라를 구축하는 비용이 소요되고, 상대적으로 부정확한 장소 정보를 반환하는 문제점이 있다. 본 연구에서는 스마트폰으로부터 수집된 사용자의 시간, 요일, 장소, 주변 동시 출현 사용자 정보 등과 같은 사용자 상황 로그를 학습하여 사용자의 장소를 추론 하는 연구와 사용자의 프로파일을 이용하여 사용자를 그룹화한 장소 추론 모델을 통해 사용자의 장소 추론 정확도를 개선하는 방법을 제안한다. 제안 방법의 성능 평가를 위해 Reality Mining Project 그룹에서 수집된 데이터셋을 사용하여 전체 사용자를 대상으로 주변 동시 출현 사용자 속성을 이용한 방법과 사용자 주변에서 동시 출현하는 사용자의 빈도가 유사한 사용자별로 그룹화한 장소를 추론하는 방법을 비교 실험하였다. 실험 결과, 전체 사용자를 대상으로 장소를 추론하는 방법에 비해 유사 사용자 군집별로 장소를 추론하는 방법의 분류 정확도가 향상되었음을 확인하였다.

Efficient Reasoning Using View in DBMS-based Triple Store (DBMS기반 트리플 저장소에서 뷰를 이용한 효율적인 추론)

  • Lee, Seungwoo;Kim, Jae-Han;You, Beom-Jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.74-78
    • /
    • 2009
  • Efficient reasoning has become important for improving the performance of ontology systems as the size of ontology grows. In this paper, we introduce a method that efficiently performs reasoning of RDFS entailment rules (i.e., rdfs7 and rdfs9 rules) and OWL inverse rule using views in the DBMS-based triple sotre. Reasoning is performed by replacing reasoning rules with the corresponding view definition and storing RDF triples into the structured triple tables. When processing queries, the views is referred instead of original tables. In this way, we can reduce the time needed for reasoning and also obtain the space-efficiency of the triple store.

  • PDF

Development of a Fuzzy-Genetic Algorithm-based Incident Detection Model with Self-adaptation Capability (Fuzzy-Genetic Algorithm기반의 자가적응형 돌발상황 검지모형 개발 연구)

  • Lee, Si-Bok;Kim, Young-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.159-173
    • /
    • 2004
  • This study utilizes the fuzzy logic and genetic algorithm to improve the existing incident detection models by addressing the problems associated with "crisp" thresholds and model transferability (applicability). The model's major components were designed to be a set of the fuzzy inference engines, and for the self-adaptation capability the genetic algorithm was introduced in optimization(or training) of the fuzzy membership functions. This approach is often called "the hybrid of fuzzy-genetic algorithm" The model performance was tested and found to be compatible with that of the existing well-recognized models in terms of performance measures such as detection rate, false alarm rate, and detection time. This study was not an effort for simple improvement of the model performance, but an experimental attempt to incorporate new characteristics essential for the incident detection model to be universally applicable for various roadway and traffic conditions. The study results prove that the initial objective of the study was satisfied, and suggest a direction that the future research work in this area must follow.

The Bi-Cross Pretraining Method to Enhance Language Representation (Bi-Cross 사전 학습을 통한 자연어 이해 성능 향상)

  • Kim, Sung-ju;Kim, Seonhoon;Park, Jinseong;Yoo, Kang Min;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.320-325
    • /
    • 2021
  • BERT는 사전 학습 단계에서 다음 문장 예측 문제와 마스킹된 단어에 대한 예측 문제를 학습하여 여러 자연어 다운스트림 태스크에서 높은 성능을 보였다. 본 연구에서는 BERT의 사전 학습 문제 중 다음 문장 예측 문제에 대해 주목했다. 다음 문장 예측 문제는 자연어 추론 문제와 질의 응답 문제와 같이 임의의 두 문장 사이의 관계를 모델링하는 문제들에 성능 향상을 위해 사용되었다. 하지만 BERT의 다음 문장 예측 문제는 두 문장을 특수 토큰으로 분리하여 단일 문자열 형태로 모델에 입력으로 주어지는 cross-encoding 방식만을 학습하기 때문에 문장을 각각 인코딩하는 bi-encoding 방식의 다운스트림 태스크를 고려하지 않은 점에서 아쉬움이 있다. 본 논문에서는 기존 BERT의 다음 문장 예측 문제를 확장하여 bi-encoding 방식의 다음 문장 예측 문제를 추가적으로 사전 학습하여 단일 문장 분류 문제와 문장 임베딩을 활용하는 문제에서 성능을 향상 시키는 Bi-Cross 사전 학습 기법을 소개한다. Bi-Cross 학습 기법은 영화 리뷰 감성 분류 데이터 셋인 NSMC 데이터 셋에 대해 학습 데이터의 0.1%만 사용하는 학습 환경에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 5점 가량의 성능 향상이 있었다. 또한 KorSTS의 bi-encoding 방식의 문장 임베딩 성능 평가에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 1.5점의 성능 향상을 보였다.

  • PDF

An Improved Memory Based Reasoning using the Fixed Partition Averaging Algorithm (고정 분할 평균 알고리즘을 사용하는 향상된 메모리 기반 추론)

  • Jeong, Tae-Seon;Lee, Hyeong-Il;Yun, Chung-Hwa
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1563-1570
    • /
    • 1999
  • In this paper, we proposed the FPA(Fixed Partition Averaging) algorithm in order to improve the storage requirement and classification time of Memory Based Reasoning method. The proposed method enables us to use the storage more efficiently by extracting representatives out of training patterns. After partitioning the pattern space into a fixed number of equally-sized hyperrectangles, it averages patterns in each hyperrectangle to extract a representative. Also we have used the mutual information between the features and classes as weights for features to improve the classification performance.

  • PDF

Croup Load Balancing Algorithm Using State Information Inference in Distributed System (분산시스템에서 상태 정보 추론을 이용한 그룹 부하 균등 알고리즘)

  • 정진섭;이재완
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1259-1268
    • /
    • 2002
  • One of the major goals suggested in distributed system is to improve the performance of the system through the load balancing of whole system. Load balancing among systems improves the rate of processor utilization and reduces the turnaround time of system. In this paper, we design the rule of decision-making and information interchange based on knowledge based mechanism which makes optimal load balancing by sharing the future load state information inferred from past and present information of each nodes. The result of performance evaluation shows that utilization of processors is balanced, the processing time is improved and reliability and availability of systems are enhanced. The proposed mechanism in this paper can be utilized in the design of load balancing algorithm in distributed operating systems.