최근 인터넷과 디바이스의 발전으로 지식 정보의 양이 방대해 지면서 대용량 온톨로지를 이용한 추론 연구가 활발히 진행되고 있다. 일반적으로 트리플로 표현되는 빅데이터는 기계학습 프로그램이나 지식 공학자가 각 트리플의 신뢰도를 측정하여 제공한다. 하지만 수집된 데이터는 불확실한 데이터를 포함하고 있으며, 이러한 데이터를 추론하는 것은 불확실성을 내포한 추론 결과를 초래할 수 있다. 본 논문에서는 불확실성 문제를 해결하기 위해 수집된 데이터에 대한 신뢰의 정도를 나타내는 신뢰값(Confidence Value)를 이용한 RDFS 규칙 추론 방법에 대하여 설명하고, 메모리 기반의 분산 클러스터 프레임워크인 스파크(Spark)를 기반으로 데이터의 불확실성에 대한 고려를 하지 않는 기존의 추론 방법과 달리 신뢰값 계산에 대한 방법을 응용하여 RDFS 규칙을 통해 추론되는 새로운 데이터의 신뢰값을 계산하며, 계산된 신뢰값은 추론된 데이터에 대한 불확실성을 나타낸다. 제안하는 추론 방법의 성능을 검증하기 위해 온톨로지 추론과 검색 속도를 평가할 때 활용되는 공식 데이터인 LUBM을 대상으로 신뢰값을 추가하여 실험을 수행하였으며, 가장 큰 데이터인 LUBM3000을 수행하였을 때 1179초의 추론시간이 소요되었고, 초당 350K 트리플을 처리할 수 있는 성능을 보였다.
시맨틱 웹을 위한 하나의 보안연구로, 본 논문에서는, 온톨로지 계층 구조와 RDF 트리플 패턴에 기반한 RDF 접근 권한 명세 모델을 소개한다. 또한 권한 명세 모델을 승인된 접근 권한들에 대한 RDF 질의 유효성 검증 과정에 적용한다. RDF 트리플 패턴을 가지는 대표적 RDF 질의 언어인 SPARQL 또는 RQL 질의는 RDF 트리플 패턴 형식으로 명세된 접근 권한에 따라 실행 거부되거나 인가될 수 있다. 이러한 질의 유효성 검증 과정을 효율적으로 수행하기 위하여 RDF 포함 관계 추론에서의 주요한 권한 충돌 조건들을 분석한다. 다음으로 분석된 충돌조건과 Dewey 그래프 레이블링 기술을 활용하는 효율적 질의 유효성 검증 알고리즘을 제시한다. 실험을 통하여 제시된 검증 알고리즘이 합리적인 유효성 검증 시간과, 데이터와 접근권한들이 증가할 때 확장성을 가짐을 보인다.
모바일 환경에서 지능형 서비스를 제공하기 위해서는 사용자의 성향이나 행동패턴 둥의 컨텍스트 정보를 효과적으로 분석하여 사용자의 의도나 요구사항을 예측할 필요가 있다. 본 논문에서는 모바일 디바이스에 축적된 불확실한 로그 정보에서 컨텍스트 정보를 추론하고, 이를 효과적으로 서비스와 매칭해 주기 위한 컨텍스트 트리 기반 사용자 행동 추론 방법을 제안한다. 이 때 불확실한 컨텍스트 정보를 효과적으로 추론하기 위해 베이지안 확률 접근 방법을 채택하였으며, 컨텍스트 트리는 수학적인 방법만으로는 다룰 수 없는 비 수치적인 컨텍스트를 효과적으로 활용하기 위해 선택한 구조이다. 그리고 제안하는 방법을 지능형 전화상대 추천 서비스에 적용하여 유용성을 검증하였다.
지식정보 사회로의 변화는 교육 패러다임의 변화를 요구하고, 이에 따라 지능형 학습과 원격 교육은 지속적인 연구 주제로서 관심을 모으고 있다. 이러한 연구 분야에서의 교수 학습 방법은 학습의 개별성, 즉, 개별 학습자의 특성에 의존하는 학습 요소 및 경로의 추출을 전제로 하며, 이는 '개별화된 추론 전략'에 대한 논의로 이어진다. 따라서 본 연구에서는 신경논리망의 확장 개념인 X-Neuronet(eXtended Neuronet)을 근거로, 학습 내용을 위계적 표상과 자체의 자기 학습(self-learning)이 가능한 학습자 인지구조체로 표현하고, 이 구조체를 이용하여 개별 학습자의 지식상태에 의존하는 추론의 개별화 전략을 설계하고, 이에 대한 타당성을 검증하였다.
유비쿼터스 컴퓨팅 환경을 구축하기 위해서는 사용자 및 주변 상황에 관한 인지기술이 필수적이다. 이에 따라 이기종 분산형 시스템에서 언어와 기종에 영향을 받지 않고 사용자 Context를 인지하고 표현하는 문제는 해결해야할 중요한 과제로 대두되었다. 이에 따라, 본 논문에서는 이 과제를 해결하기 위하여 시맨틱 웹 기술 및 퍼지 개념을 이용하여 사용자 Context를 기술하는 것을 제안한다. 온톨로지는 컴퓨터가 정보자원의 의미를 파악하고 자동적으로 처리할 수 있도록 고안된 지식표현 언어이므로 이기종 시스템 하에서의 사용자 Context를 표현하는데 적합하다. 한편, 사용자가 접할 실세계의 환경은 일반집합(Crisp Set)으로 표현하기 힘들기 때문에 본 논문에서는 퍼지개념과 표준 웹 온톨로지 언어 OWL이 융합된 Fuzzy OWL언어를 사용했다. 본 논문에서 제안하는 방법은 Context를 Fuzzy OWL로 표현하기 위하여 먼저 사용자가 접한 환경정보들을 수치로 표현한다. 그리고 이를 OWL로 기술하며 OWL로 표현된 사용자 Context를 Fuzzy OWL로 변환한다. 마지막으로 퍼지 개념이 포함된 사용자 Context를 이용하여 자동적인 상황인지가 가능한지 여부를 퍼지 추론 엔진인 FiRE를 사용하여 실험한다. 본 논문에서 제시한 방법을 사용하면 이기종 분산시스템에서도 사용할 수 있는 형태로 Context를 기술할 수 있다. 그리고 기술된 Context를 기반으로 현재 사용자가 접한 환경의 상태를 추론할 수 있다. 또한 퍼지 기술 로직 언어(Fuzzy Description Logic)기반 추론기인 FiRE를 이용하여 이를 검증한다.
전문가시스템의 지식획득, 적합한 추론기구의 설계 및 구현, 지식의 정제 등 다단계 과정으로 이뤄져 있다. 각각을 하나의 연구이슈로 다양한 연구가 진행되어 왔으나 전체를 하나로 연계해 통합적 개발에 관해서는 상대적으로 연구가 활발히 진행되지 못한 실정이다. 지식획득은 전문가에 의해 수행되는 추론과정에서 특징 응용분야의 필요한 지식이 전달되어야 하므로 시식획득과 추론을 서로 밀접한 연관성을 갖는다. 지식의 정제는 추론과정에서 일어나는 문에의 제기와 이의 해결을 통해 지식베이스의 불완전하거나 논리적 모순을 찾아 해결함으로 지식베이스를 보다 완벽하고 정확한 것으로 만드는 것이다. ㅂㄴ 연구에서는 서로 연관된 다단계 과정이 통합적으로 개발될 수 있는 환경의 설저엥 대한 하나의 방안을 제시하려한다. 특히 도메인 모델이 잘 정립되기 어려운 분야에 학습기법을 활용햇 초기 지식 베이스를 구성할 수 있는 점진적 지식획득방법과 이를 통해 만들어진 지식베이스 규칙들을 학습기법의 일종인 개념적 클러스터링 기법을 이용하여 규칙모델을 구축하고 이를 이용해 효율적인 추론이 가능하게 하며, 지식획득 과정에서는 규칙의 오류를 제시할 수 있고 이에 대한 규칙의 수정이나 새로운 규칙이 기존의 지식구조에 합당한지를 결정하는 통합적 설계방안에 대해 연구한다. 지식의 정제는 설명기구와 규칙모델을 활용하여 문제의 원인을 찾고 해결점을 제시해 그에 대한 유효성을 검증합으로 이뤄지게 한다.뤄지게 한다.
범주기반 귀납추론은 인간이 사용하는 주요한 추론방법중 하나이다. 본 연구는 지각된 범주내 변산성이 범주기반 귀납적 일반화에 미치는 효과를 검증하기 위해 실시되었다. 실험 1에서는 범주 예시를 직접 제시하여 범주 변산성 지각을 조작하였다. 조건에 따라 범주내 변산성이 낮은 예시들 (낮은 변산 조건) 혹은 높은 예시들 (높은 변산 조건)을 범주의 예로 제시한 후, 해당 범주에 대한 귀납적 일반화 과제를 실시하였다. 그 결과 지각된 범주 변산성이 낮은 조건이 지각된 변산성이 높은 조건보다 귀납적 일반화에 대한 확신이 더 높다는 것을 확인하였다. 실험 2에서는 범주의 예시를 직접 제시하지 않고, 다양한 예시들 중 특정 범주에 속하는 예들을 참가자들이 변별하는 범주화 과제를 실시함으로써 범주 변산성을 지각하도록 한 후, 귀납추론 과제를 실시하였다. 그 결과, 실험 1과 마찬가지로 지각된 범주 변산성이 낮은 조건이 높은 조건보다 귀납적 일반화에 대한 확신이 더 강해지는 경향을 확인할 수 있었다. 본 연구의 결과는 기존 연구에서 보여준 다양성 효과와 차이점을 보이며 또한 Osherson과 동료들 (1990)이 제안한 귀납추론 모형으로는 설명하기 어렵다. 종합논의에서 범주기반 귀납추론에서 지각된 변산성 효과의 검증에 대해 간략히 논의하였다.
앙상블 기법은 여러 모델을 종합하여 최종 판단을 산출하는 기계 학습 기법으로서 딥러닝 모델의 성능 향상을 보장한다. 하지만 대부분의 기법은 앙상블만을 위한 추가적인 모델 또는 별도의 연산을 요구한다. 이에 우리는 앙상블 기법을 교차 검증 방법과 결합하여 앙상블 연산을 위한 비용을 줄이며 일반화 성능을 높이는 교차 검증 앙상블 기법을 제안한다. 본 기법의 효과를 입증하기 위해 MRPC, RTE 데이터셋과 BiLSTM, CNN, BERT 모델을 이용하여 기존 앙상블 기법보다 향상된 성능을 보인다. 추가로 교차 검증에서 비롯한 일반화 원리와 교차 검증 변수에 따른 성능 변화에 대하여 논의한다.
범주기반 속성추론에 대한 초기연구들은 전형성, 다양성, 유사성 효과 등 인간 사고에서 나타나는 다양한 현상들을 보고하였다. 이후 연구들은 이러한 추론에서 참가자들의 사전지식이 광범위한 영향을 미친다는 것을 발견하였다. 본 연구에서는 다양한 사전지식들 중 하나인 인과적 지식이 속성추론에 미치는 영향을 검증하고 이를 모델링하였다. 이를 위해 참가자들은 네 개의 속성으로 구성된 범주에서 속성들이 공통원인 혹은 공통효과 인과구조로 연결되었을 때 속성추론과제를 실시하였다. 그 결과 전형성 효과와 더불어 공통원인 구조에서 인과적 마코프 조건(causal Markov condition)에 대한 위배와 공통효과 구조에서 인과적 절감(causal discounting)이 관찰되었다. 이를 모델링하기 위해 참가자들은 표적속성이 존재하는 범주예시와 존재하지 않은 범주예시가 존재할 가능성에 대한 차이값 (즉, $p(E_{F(X)}{\mid}Cat)-p(E_{F({\sim}X)}{\mid}Cat)$에 근거하여 속성추론을 수행한다고 가정하였다. 인과모형이론(Rehder, 2003)에 기반하여 범주예시들의 확률값을 계산한 후 각 표적속성에 대한 추론에 적용하였다. 그 결과 모형은 참가자들의 데이터에서 관찰된 전형성 효과뿐만 아니라 인과적 마코프 조건에 대한 위배 및 인과적 절감을 모두 예측한다는 것이 확인되었다.
생성 규칙의 지식 표현 방식은 많은 장점에도 불구하고 일관성 유지가 어렵다는 단점을 갖고 있다. 그런데 지식의 일관성 유지 여부는 지식을 기반으로 한 추론 결과의 신뢰도에 직결되므로 신뢰성을 제고하기 위하여 일관성 검증 시스템이 필수적이다. 일관성 검증 방식 중 가장 많이 사용되는 쌍 검증(pairwise checking) 방식에서는 가치 있는 규칙이 생략될 수 있으며 규칙의 수가 많은 경우에는 검증 시간이 많이 걸리는 단점이 있다. 따라서 본 논문에서는 확실한 특성의 리스트와 가능한 특성의 리스트를 사용하고 검증단계를 개선함으로써 쌍 검증 방식의 단점을 보완하여, 구조적 및 의미적 오류도 제거한 수 있는 검증 시스템을 제안하고 구축한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.