• 제목/요약/키워드: 추론 검증

검색결과 460건 처리시간 0.033초

신뢰값 기반 대용량 트리플 처리를 위한 스파크 환경에서의 RDFS 온톨로지 추론 (Spark based Scalable RDFS Ontology Reasoning over Big Triples with Confidence Values)

  • 박현규;이완곤;바트셀렘;박영택
    • 정보과학회 논문지
    • /
    • 제43권1호
    • /
    • pp.87-95
    • /
    • 2016
  • 최근 인터넷과 디바이스의 발전으로 지식 정보의 양이 방대해 지면서 대용량 온톨로지를 이용한 추론 연구가 활발히 진행되고 있다. 일반적으로 트리플로 표현되는 빅데이터는 기계학습 프로그램이나 지식 공학자가 각 트리플의 신뢰도를 측정하여 제공한다. 하지만 수집된 데이터는 불확실한 데이터를 포함하고 있으며, 이러한 데이터를 추론하는 것은 불확실성을 내포한 추론 결과를 초래할 수 있다. 본 논문에서는 불확실성 문제를 해결하기 위해 수집된 데이터에 대한 신뢰의 정도를 나타내는 신뢰값(Confidence Value)를 이용한 RDFS 규칙 추론 방법에 대하여 설명하고, 메모리 기반의 분산 클러스터 프레임워크인 스파크(Spark)를 기반으로 데이터의 불확실성에 대한 고려를 하지 않는 기존의 추론 방법과 달리 신뢰값 계산에 대한 방법을 응용하여 RDFS 규칙을 통해 추론되는 새로운 데이터의 신뢰값을 계산하며, 계산된 신뢰값은 추론된 데이터에 대한 불확실성을 나타낸다. 제안하는 추론 방법의 성능을 검증하기 위해 온톨로지 추론과 검색 속도를 평가할 때 활용되는 공식 데이터인 LUBM을 대상으로 신뢰값을 추가하여 실험을 수행하였으며, 가장 큰 데이터인 LUBM3000을 수행하였을 때 1179초의 추론시간이 소요되었고, 초당 350K 트리플을 처리할 수 있는 성능을 보였다.

포함관계 추론에서 접근 권한에 대한 효율적 RDF 질의 유효성 검증 (An Efficient RDF Query Validation for Access Authorization in Subsumption Inference)

  • 김재훈;박석
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권6호
    • /
    • pp.422-433
    • /
    • 2009
  • 시맨틱 웹을 위한 하나의 보안연구로, 본 논문에서는, 온톨로지 계층 구조와 RDF 트리플 패턴에 기반한 RDF 접근 권한 명세 모델을 소개한다. 또한 권한 명세 모델을 승인된 접근 권한들에 대한 RDF 질의 유효성 검증 과정에 적용한다. RDF 트리플 패턴을 가지는 대표적 RDF 질의 언어인 SPARQL 또는 RQL 질의는 RDF 트리플 패턴 형식으로 명세된 접근 권한에 따라 실행 거부되거나 인가될 수 있다. 이러한 질의 유효성 검증 과정을 효율적으로 수행하기 위하여 RDF 포함 관계 추론에서의 주요한 권한 충돌 조건들을 분석한다. 다음으로 분석된 충돌조건과 Dewey 그래프 레이블링 기술을 활용하는 효율적 질의 유효성 검증 알고리즘을 제시한다. 실험을 통하여 제시된 검증 알고리즘이 합리적인 유효성 검증 시간과, 데이터와 접근권한들이 증가할 때 확장성을 가짐을 보인다.

모바일 환경에서의 지능형 서비스를 위한 베이지안 추론과 컨텍스트 트리 매칭방법 (Bayesian Inferrence and Context-Tree Matching Method for Intelligent Services in a Mobile Environment)

  • 김희택;민준기;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권2호
    • /
    • pp.144-152
    • /
    • 2009
  • 모바일 환경에서 지능형 서비스를 제공하기 위해서는 사용자의 성향이나 행동패턴 둥의 컨텍스트 정보를 효과적으로 분석하여 사용자의 의도나 요구사항을 예측할 필요가 있다. 본 논문에서는 모바일 디바이스에 축적된 불확실한 로그 정보에서 컨텍스트 정보를 추론하고, 이를 효과적으로 서비스와 매칭해 주기 위한 컨텍스트 트리 기반 사용자 행동 추론 방법을 제안한다. 이 때 불확실한 컨텍스트 정보를 효과적으로 추론하기 위해 베이지안 확률 접근 방법을 채택하였으며, 컨텍스트 트리는 수학적인 방법만으로는 다룰 수 없는 비 수치적인 컨텍스트를 효과적으로 활용하기 위해 선택한 구조이다. 그리고 제안하는 방법을 지능형 전화상대 추천 서비스에 적용하여 유용성을 검증하였다.

학습자 인지 구조체를 이용한 추론의 개별화 전략 (A Individualized Reasoning Strategy using Learner's Cognitive Union)

  • 김용범;김영식
    • 컴퓨터교육학회논문지
    • /
    • 제9권5호
    • /
    • pp.31-39
    • /
    • 2006
  • 지식정보 사회로의 변화는 교육 패러다임의 변화를 요구하고, 이에 따라 지능형 학습과 원격 교육은 지속적인 연구 주제로서 관심을 모으고 있다. 이러한 연구 분야에서의 교수 학습 방법은 학습의 개별성, 즉, 개별 학습자의 특성에 의존하는 학습 요소 및 경로의 추출을 전제로 하며, 이는 '개별화된 추론 전략'에 대한 논의로 이어진다. 따라서 본 연구에서는 신경논리망의 확장 개념인 X-Neuronet(eXtended Neuronet)을 근거로, 학습 내용을 위계적 표상과 자체의 자기 학습(self-learning)이 가능한 학습자 인지구조체로 표현하고, 이 구조체를 이용하여 개별 학습자의 지식상태에 의존하는 추론의 개별화 전략을 설계하고, 이에 대한 타당성을 검증하였다.

  • PDF

Fuzzy OWL을 이용한 사용자 Context의 표현 및 추론

  • 손종수;정인정
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 추계학술대회
    • /
    • pp.451-456
    • /
    • 2007
  • 유비쿼터스 컴퓨팅 환경을 구축하기 위해서는 사용자 및 주변 상황에 관한 인지기술이 필수적이다. 이에 따라 이기종 분산형 시스템에서 언어와 기종에 영향을 받지 않고 사용자 Context를 인지하고 표현하는 문제는 해결해야할 중요한 과제로 대두되었다. 이에 따라, 본 논문에서는 이 과제를 해결하기 위하여 시맨틱 웹 기술 및 퍼지 개념을 이용하여 사용자 Context를 기술하는 것을 제안한다. 온톨로지는 컴퓨터가 정보자원의 의미를 파악하고 자동적으로 처리할 수 있도록 고안된 지식표현 언어이므로 이기종 시스템 하에서의 사용자 Context를 표현하는데 적합하다. 한편, 사용자가 접할 실세계의 환경은 일반집합(Crisp Set)으로 표현하기 힘들기 때문에 본 논문에서는 퍼지개념과 표준 웹 온톨로지 언어 OWL이 융합된 Fuzzy OWL언어를 사용했다. 본 논문에서 제안하는 방법은 Context를 Fuzzy OWL로 표현하기 위하여 먼저 사용자가 접한 환경정보들을 수치로 표현한다. 그리고 이를 OWL로 기술하며 OWL로 표현된 사용자 Context를 Fuzzy OWL로 변환한다. 마지막으로 퍼지 개념이 포함된 사용자 Context를 이용하여 자동적인 상황인지가 가능한지 여부를 퍼지 추론 엔진인 FiRE를 사용하여 실험한다. 본 논문에서 제시한 방법을 사용하면 이기종 분산시스템에서도 사용할 수 있는 형태로 Context를 기술할 수 있다. 그리고 기술된 Context를 기반으로 현재 사용자가 접한 환경의 상태를 추론할 수 있다. 또한 퍼지 기술 로직 언어(Fuzzy Description Logic)기반 추론기인 FiRE를 이용하여 이를 검증한다.

  • PDF

지식획득, 추론, 지식정제의 통합적 설계를 위한 규칙모델의 구축 (Rule Models for the Integrated Design of Knowledge Acquisition, Reasoning, and Knowledge Refinement)

  • 이계성
    • 한국정보처리학회논문지
    • /
    • 제3권7호
    • /
    • pp.1781-1791
    • /
    • 1996
  • 전문가시스템의 지식획득, 적합한 추론기구의 설계 및 구현, 지식의 정제 등 다단계 과정으로 이뤄져 있다. 각각을 하나의 연구이슈로 다양한 연구가 진행되어 왔으나 전체를 하나로 연계해 통합적 개발에 관해서는 상대적으로 연구가 활발히 진행되지 못한 실정이다. 지식획득은 전문가에 의해 수행되는 추론과정에서 특징 응용분야의 필요한 지식이 전달되어야 하므로 시식획득과 추론을 서로 밀접한 연관성을 갖는다. 지식의 정제는 추론과정에서 일어나는 문에의 제기와 이의 해결을 통해 지식베이스의 불완전하거나 논리적 모순을 찾아 해결함으로 지식베이스를 보다 완벽하고 정확한 것으로 만드는 것이다. ㅂㄴ 연구에서는 서로 연관된 다단계 과정이 통합적으로 개발될 수 있는 환경의 설저엥 대한 하나의 방안을 제시하려한다. 특히 도메인 모델이 잘 정립되기 어려운 분야에 학습기법을 활용햇 초기 지식 베이스를 구성할 수 있는 점진적 지식획득방법과 이를 통해 만들어진 지식베이스 규칙들을 학습기법의 일종인 개념적 클러스터링 기법을 이용하여 규칙모델을 구축하고 이를 이용해 효율적인 추론이 가능하게 하며, 지식획득 과정에서는 규칙의 오류를 제시할 수 있고 이에 대한 규칙의 수정이나 새로운 규칙이 기존의 지식구조에 합당한지를 결정하는 통합적 설계방안에 대해 연구한다. 지식의 정제는 설명기구와 규칙모델을 활용하여 문제의 원인을 찾고 해결점을 제시해 그에 대한 유효성을 검증합으로 이뤄지게 한다.뤄지게 한다.

  • PDF

범주예시에 의해 지각된 범주내 변산성이 범주기반 귀납적 일반화에 미치는 효과 (The effect of perceived within-category variability through its examples on category-based inductive generalization)

  • 이국희;김신우;이형철
    • 인지과학
    • /
    • 제25권3호
    • /
    • pp.233-257
    • /
    • 2014
  • 범주기반 귀납추론은 인간이 사용하는 주요한 추론방법중 하나이다. 본 연구는 지각된 범주내 변산성이 범주기반 귀납적 일반화에 미치는 효과를 검증하기 위해 실시되었다. 실험 1에서는 범주 예시를 직접 제시하여 범주 변산성 지각을 조작하였다. 조건에 따라 범주내 변산성이 낮은 예시들 (낮은 변산 조건) 혹은 높은 예시들 (높은 변산 조건)을 범주의 예로 제시한 후, 해당 범주에 대한 귀납적 일반화 과제를 실시하였다. 그 결과 지각된 범주 변산성이 낮은 조건이 지각된 변산성이 높은 조건보다 귀납적 일반화에 대한 확신이 더 높다는 것을 확인하였다. 실험 2에서는 범주의 예시를 직접 제시하지 않고, 다양한 예시들 중 특정 범주에 속하는 예들을 참가자들이 변별하는 범주화 과제를 실시함으로써 범주 변산성을 지각하도록 한 후, 귀납추론 과제를 실시하였다. 그 결과, 실험 1과 마찬가지로 지각된 범주 변산성이 낮은 조건이 높은 조건보다 귀납적 일반화에 대한 확신이 더 강해지는 경향을 확인할 수 있었다. 본 연구의 결과는 기존 연구에서 보여준 다양성 효과와 차이점을 보이며 또한 Osherson과 동료들 (1990)이 제안한 귀납추론 모형으로는 설명하기 어렵다. 종합논의에서 범주기반 귀납추론에서 지각된 변산성 효과의 검증에 대해 간략히 논의하였다.

자연어 추론에서의 교차 검증 앙상블 기법 (Cross-Validated Ensemble Methods in Natural Language Inference)

  • 양기수;황태선;오동석;박찬준;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.8-11
    • /
    • 2019
  • 앙상블 기법은 여러 모델을 종합하여 최종 판단을 산출하는 기계 학습 기법으로서 딥러닝 모델의 성능 향상을 보장한다. 하지만 대부분의 기법은 앙상블만을 위한 추가적인 모델 또는 별도의 연산을 요구한다. 이에 우리는 앙상블 기법을 교차 검증 방법과 결합하여 앙상블 연산을 위한 비용을 줄이며 일반화 성능을 높이는 교차 검증 앙상블 기법을 제안한다. 본 기법의 효과를 입증하기 위해 MRPC, RTE 데이터셋과 BiLSTM, CNN, BERT 모델을 이용하여 기존 앙상블 기법보다 향상된 성능을 보인다. 추가로 교차 검증에서 비롯한 일반화 원리와 교차 검증 변수에 따른 성능 변화에 대하여 논의한다.

  • PDF

인과적 범주의 속성추론 모델링 (Modeling feature inference in causal categories)

  • 김신우;이형철
    • 인지과학
    • /
    • 제28권4호
    • /
    • pp.329-347
    • /
    • 2017
  • 범주기반 속성추론에 대한 초기연구들은 전형성, 다양성, 유사성 효과 등 인간 사고에서 나타나는 다양한 현상들을 보고하였다. 이후 연구들은 이러한 추론에서 참가자들의 사전지식이 광범위한 영향을 미친다는 것을 발견하였다. 본 연구에서는 다양한 사전지식들 중 하나인 인과적 지식이 속성추론에 미치는 영향을 검증하고 이를 모델링하였다. 이를 위해 참가자들은 네 개의 속성으로 구성된 범주에서 속성들이 공통원인 혹은 공통효과 인과구조로 연결되었을 때 속성추론과제를 실시하였다. 그 결과 전형성 효과와 더불어 공통원인 구조에서 인과적 마코프 조건(causal Markov condition)에 대한 위배와 공통효과 구조에서 인과적 절감(causal discounting)이 관찰되었다. 이를 모델링하기 위해 참가자들은 표적속성이 존재하는 범주예시와 존재하지 않은 범주예시가 존재할 가능성에 대한 차이값 (즉, $p(E_{F(X)}{\mid}Cat)-p(E_{F({\sim}X)}{\mid}Cat)$에 근거하여 속성추론을 수행한다고 가정하였다. 인과모형이론(Rehder, 2003)에 기반하여 범주예시들의 확률값을 계산한 후 각 표적속성에 대한 추론에 적용하였다. 그 결과 모형은 참가자들의 데이터에서 관찰된 전형성 효과뿐만 아니라 인과적 마코프 조건에 대한 위배 및 인과적 절감을 모두 예측한다는 것이 확인되었다.

개선된 쌍 검증 방식을 이용한 지식 검증 시스템 (Knowledge Verification System with Unproved Pairwise Checking Method)

  • 서의현
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.505-511
    • /
    • 2003
  • 생성 규칙의 지식 표현 방식은 많은 장점에도 불구하고 일관성 유지가 어렵다는 단점을 갖고 있다. 그런데 지식의 일관성 유지 여부는 지식을 기반으로 한 추론 결과의 신뢰도에 직결되므로 신뢰성을 제고하기 위하여 일관성 검증 시스템이 필수적이다. 일관성 검증 방식 중 가장 많이 사용되는 쌍 검증(pairwise checking) 방식에서는 가치 있는 규칙이 생략될 수 있으며 규칙의 수가 많은 경우에는 검증 시간이 많이 걸리는 단점이 있다. 따라서 본 논문에서는 확실한 특성의 리스트와 가능한 특성의 리스트를 사용하고 검증단계를 개선함으로써 쌍 검증 방식의 단점을 보완하여, 구조적 및 의미적 오류도 제거한 수 있는 검증 시스템을 제안하고 구축한다.